Tables to Support the Analytical Methods in Use at MURR: NAA, XRF and ICP-MS

by

Michael D. Glascock Research Reactor Center University of Missouri Columbia, MO 65211

Copyright (C) 2020, The University of Missouri

PREFACE

Tables to Support the Analytical Methods in Use at MURR: NAA, XRF and ICP-MS became needed after earlier editions of this book were exhausted. This edition of the book provides information useful for all analytical methods employed at MURR such as Neutron Activation Analysis, X-ray Fluorescence (XRF), and various methods of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The latter includes conventional ICP-MS, laser ablation ICP-MS, and multi-collector ICP-MS. Errors from earlier editions have been corrected. It is hoped that this book will continue to prove useful to students and colleagues using one or more of the analytical methods at MURR.

Michael D. Glascock Research Reactor Center University of Missouri Columbia, MO 65211 USA

Phone number:	(573) 882-5270
FAX number:	(573-882-6360
Email address:	<u>glascockm@missouri.edu</u>

Table of Contents

Title page and preface	ii
Table of contents	iii
References to the tables	v

Tables

1.	Atomic weights, isotope abundances, and densities for the elements
2.	Relative abundances of the naturally occurring isotopes
3.	Energies of the principal K-, L- and M-shell X-rays in keV
4.	Absorption cross-sections for reactions with thermal and resonance neutrons10
5.	Uranium-235 fission-neutron averaged cross-sections
6.	Properties of the radioactive isotopes arranged by atomic number
7.	Background peaks commonly observed in gamma-ray spectra
8.	Gamma rays arranged by energy (half-life < 1 day)
9.	Gamma rays arranged by energy (half-life > 1 day) 50
	Biological SRMs from the National Institute of Standards and Technology (NIST)
10.	Concentrations of elements in SRM-1515, SRM-1547 and SRM-1566 60
11.	Concentrations of elements in SRM-1566a, SRM-1566b, SRM-1567 and SRM-1568 61
12.	Concentrations of elements in SRM-1570, SRM-1570a and SRM-1571
13.	Concentrations of elements in SRM-1572 and SRM-1573
14.	Concentrations of elements in SRM-1577, SRM-1577a and SRM-1577b64
	Geological SRMs from the National Institute of Standards and Technology (NIST)
15.	Concentrations of elements in SRM-1d, SRM-97b and SRM-98b
16.	Concentrations of elements in SRM-278, SRM-679 and SRM-688
17.	Concentrations of elements in SRM-1632, SRM-1632a and SRM-1633
18.	Concentrations of elements in SRM-1633a Coal Fly Ash
19.	Concentrations of elements in SRM-1633b Coal Fly Ash
20.	Concentrations of elements in SRM-1633c Coal Fly Ash
21.	Concentrations of elements in SRM-1635, SRM-1645 and SRM-1646
22.	Concentrations of elements in SRM-2704 and SRM-2709.
23.	Concentrations of elements in SRM-2710 and SRM 2711
	Geological SRMs from United States Geological Survey (USGS)
24.	Concentrations of elements in USGS Rocks: AGV-1, AGV-2, BCR-1 and BCR-2,
25.	Concentrations of elements in USGS Rocks: BHVO-1, BHVO-2, BIR-1 and DNC-2
26.	Concentrations of elements in USGS Rocks: DTS-1, DTS-2B, G-1 and G-2,
27.	Concentrations of elements in USGS Rocks: GSP-1, GSP-2, MAG-1 and PCC-1,
28.	Concentrations of elements in USGS Rocks: OLO-1, RGM-1, RGM-2, SCo-1,
29.	Concentrations of elements in USGS Rocks: SDC-1, SDO-1, SGR-1 and STM-1,
30.	Concentrations of elements in USGS Rocks: W-1, W-2, NKT-1 and TLM-1
	Geological SRMs from the Geological Survey of Japan (GSJ)
31.	Concentrations of elements in GSJ Rocks: JA-1, JA-2, JA-3, JB-2, JG-2, & JG-3,
32.	Concentrations of elements in GSJ Rocks: JCh-1. JDo-1. JLs-1. JF-1. JGb-2. & JSv-1
33.	Concentrations of elements in GSJ Rocks. Chinese Rocks. and Mediterranean obsidian
	Including – JR-1, JR-2, JR-3, GBW07113, ARC, & PAN
	-

Table of Contents (continued)

Information Useful for Geological Studies

	miormation eserar for sectorized states	
34.	Element-to-oxide and oxide-to-element conversion factors	84
35.	Concentrations of major oxides in USGS and NIST Rocks in weight (%)	86
36.	Concentrations of major oxides in GSJ Rocks in weight (%)	88
37.	Concentrations of elements in well-known shale and granite composites	89
38.	Chondritic (primordial) abundances used for normalizing REE concentrations	90

Reference Materials for Analysis of Archaeological Ceramics

	Reference materials for manyous of menacorogreat Certaines	
39.	Concentrations of elements in Old Ohio Red, New Ohio Red, and Ohio Gold clays	91
40.	Concentrations of elements in Talc Free, Terracotta, and Pikermi clays	92
41.	Concentrations of elements in Lefkandi Brick clay	. 93
42.	Concentrations of elements in SARM-69 ceramic standard	94
43.	Concentrations of elements in British Museum's Standard pottery with conversion factors	. 95
44.	Concentrations of elements in Perlman-Asaro Standard pottery with conversion factors	. 96
45.	Concentrations of elements in Ohio Red clay at Brookhaven Lab with conversion factors	97

Reference Materials for Analysis of Archaeological Metals and Glasses

46.	Concentrations of elements in copper standards from NIST	98
47.	Concentrations of elements in copper standards for XRF: BCR-691 series.	99
48.	Concentrations of elements in copper standards for XRF: Brammer standards	99
49.	Concentrations of elements in copper standards for XRF: Metal Standards Company	99
50.	Concentrations of elements in precious metals for XRF calibration	100
51.	Concentrations of elements in glass reference materials: Brill Glass	101
52.	Concentrations of elements in glass reference materials: NIST and MURR	102
53.	Reference materials for lead isotope studies.	103
54.	Reference materials for strontium isotope studies.	103

REFERENCES USED FOR TABLES

Anders, E. & N. Grevesse (1989). Geochimica Cosmochimica Acta, 53: 197-214.

- Baum, E.M., H.D. Knox & T.R. Miller (2002). *Nuclides and Isotopes: Chart of the Nuclides*, 16th edition, Knolls Atomic Power Laboratory, Lockheed Martin.
- Blaauw, M. (1996). *The k₀-Consistent IRI Gamma-ray Catalogue for INAA*. Interfacultair Reactor Instituut van de Technische Universiteit Delft.

Brammer standards homepage: http://www.brammerstandard.com/

- Calamand, A. (1974). Cross-sections for fission neutron spectrum induced reactions. *Handbook on Nuclear Activation Cross-Sections*, IAEA Technical Reports Serial No. 156 (IAEA, Vienna) pp. 273-309.
- Chu, S.Y.F., L.P. Ekstrom and R.B. Firestone (1999). *The Lund/LBNL Nuclear Data Search*, version 2.0: *http://nucleardata.nuclear.lu.se/toi/*
- Coursey, J. S., D. J. Schwab & R. A. Dragoset (2005). Atomic weights and isotopic compositions with relative atomic masses. National Institutes of Standards and Technology Standard Reference Database 144, <u>http://physics.nist.gov/PhysRefData/Compositions/</u>.
- De Bievre, P. and I.L. Barnes (1985). International Journal of Mass Spectrometry and Ion Processes 65: 211.
- De Corte, Franz (1987). *The k*₀-Standardization Method: A Move to the Optimization of Neutron Activation Analysis. Rijksuniversiteit, Gent.
- Firestone, R.B. (1996). *Table of Isotopes: Volumes I & II (8th edition)*, edited by V.S. Shirley, C.M. Baglin, S.Y. Frank Chu & Jean Zipkin. Wiley-Interscience, New York, NY, 3168 p.
- GeoREM website at the University of Mainz, Germany. http://georem.mpch-mainz.gwdg.de/

Gladney, E.S. and C.E. Burns (1983). Geostandards Newsletter VII.

Gladney, E.S., B.T. O'Malley, I. Roelandts & T.R. Gills (1987). NBS Special Publication 260-111, 531 p.

- Glascock, M.D., W.Z. Tian & W.H. Ehmann (1985). *Journal of Radioanalytical and Nuclear Chemistry*, 92: 379-390.
- Gromet, L.P., R.F. Dymek, L.A. Haskin & R.L. Korotev (1984). Geochimica Cosmochimica Acta, 48: 2469-2482.
- Gryntakis, E.M. amd J.I. Kim (1983). Journal of Radioanalytical Chemistry, 76(2): 341-496.
- Haskin, L.A., M.A. Haskin & F.A. Frey (1968). In Origin and Distribution of the Elements, ed. Ahrens, L.H., Oxford: Pergamon, p. 889-912.
- Hughes, M. (2007). Neutron activation analysis at the British Museum, London. *Archaeometry* 49(2): 255-270.
- Korotev, R.L. (1991). Personnel communication.

Kuleff, I. & R. Djingova (1998). Journal of Radioanalytical and Nuclear Chemistry, 237: 3-6.

- Kuleff, I & Pernicka, E. (2002). INAA of some geological standard reference materials. *Journal of Radioanalytical and Nuclear Chemistry*, 251(1): 139-143.
- Laul, J.C. (1979). Atomic Energy Review, 17: 603-695.
- Lude, David R. (1996). *Handbook of Chemistry and Physics*, 75th edition, CRC Press.
- Masuda, A., N. Nakamura & T. Tanaka (1973). Geochimica Cosmochimica Acta, 37: 239-248.
- Mughabghab, S.F. (2006). Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Elsevier Science Ltd.
- Mughabghab, S.F., M. Divadeenam & N. E. Holden (1981). Neutron Cross Sections from Neutron Resonance Parameters and Thermal Cross Sections, Part A, Z=1-60. Academic Press.
- Mughabghab, S.F., M. Divadeenam & N. E. Holden (1983). Neutron cross sections from Neutron Resonance Parameters and Thermal Cross Sections, Part B, Z=61-100. Academic Press.
- Nakamura, N. (1974). Geochimica Cosmochimica Acta, 38: 757-775.
- Perlman, I. & Asaro, F. (1969). Pottery analysis by neutron activation. Archaeometry 11: 21-52.
- Taylor, S.R. & S.M. McLennan (1985). *The Continental Crust—Its Composition and Evolution*, Blackwell Scientific Publication, Oxford, England, 312 p.

Table 1. Atomic weights, isotope abundances, and densities for the elements.

Density	Standard	Isotope	Relative		Element	Atomic
(g/cm ³)	Atomic Weight	Abundance (%)	Atomic Mass	lsotope	Name	Number
8.9E-05	1.0079	99.9885	1.007 825	H-1 (p)	Hydrogen	1
		0.0115	2.014 102	H-2 (d)	, 0	
			3.016 049	H-3 (t)		
1.78E-04	4.0026	0.00013	3.016 029	He-3	Helium	2
		99.999866	4.002 603	He-4 (α)		
0.53	6.9410	7.59	6.015 123	Li-6	Lithium	3
		92.41	7.016 005	Li-7		
1.85	9.0122	100	9.012 182	Be-9	Beryllium	4
2.3	10.8110	19.9	10.012 937	B-10	Boron	5
		80.1	11.009 305	B-11		
1.6	12.0107	98.93	12.000 000	C-12	Carbon	6
(graphite)		1.07	13.003 355	C-13		
			14.003 242	C-14		
1.3E-03	14.0067	99.636	14.003 074	N-14	Nitrogen	7
		0.364	15.000 109	N-15		
1.4E-03	15.9994	99.757	15.994 915	O-16	Oxygen	8
		0.038	16.999 132	0-17		
		0.205	17.999 161	O-18		
1.7E-03	18.9984	100	18.998 403	F-19	Fluorine	9
9.0E-04	20.1797	90.48	19.992 440	Ne-20	Neon	10
		0.27	20.993 847	Ne-21		
		9.25	21.991 385	Ne-22		
0.97	22.9898	100	22.989 769	Na-23	Sodium	11
1.74	24.3050	78.99	23.985 042	Mg-24	Magnesium	12
		10.00	24.985 837	Mg-25		
		11.01	25.982 593	Mg-26		
2.699	26.9815	100	26.981 539	Al-27	Aluminum	13
2.33	28.0855	92.223	27.976 927	Si-28	Silicon	14
		4.685	28.976 495	Si-29		
		3.092	29.973 770	Si-30		
1.82	30.9738	100	30.973 762	P-31	Phosphorus	15
2.07	32.0650	94.99	31.972 071	S-32	Sulfur	16
		0.75	32.971 459	S-33		
		4.25	33.967 867	S-34		
		0.01	35.967 081	S-36		
3.20E-03	35.4530	75.76	34.968 853	Cl-35	Chlorine	17
		24.24	36.965 903	Cl-37		
1.80E-03	39.9480	0.3365	35.967 545	Ar-36	Argon	18
		0.0632	37.962 732	Ar-38		
		99.6003	39.962 383	Ar-40		

Table 1. Atomic weights, isotope abundances, and densities for the elements.

Atomic	Element		Relative	Isotope	Standard	Density
Number	Name	Isotope	Atomic Mass	Abundance (%)	Atomic Weight	(g/cm³)
19	Potassium	K-39	38.963 707	93.2581	39.0983	0.86
		K-40	39.963 999	0.0117		
		K-41	40.961 826	6.7302		
20	Calcium	Ca-40	39,962 591	96.941	40.0780	1.55
20	Calcium	Ca-42	41 958 618	0.647	10.0700	1.55
		Ca-43	42 958 767	0.017		
		Ca-44	43 955 482	2 086		
		Ca-46	45 953 693	0.004		
		Ca-40 Ca-48	47.952 534	0.187		
21	Scandium	Sc-45	44.955 912	100	44.9559	2.5
22	Titanium	Ti-46	45 952 632	8 25	47 8670	4 51
22	intainain	Ti-47	46 951 763	7 11	47.0070	4.51
		Ti_47	40.931703	7.44		
		Ti 40	47.547 540	5.72		
		Ti-50	49.944 791	5.18		
22	Mara di una	N/ F0	40.047.150	0.25	50.0415	<u> </u>
23	vanadium	V-50 V-51	49.947 159 50.943 960	0.25 99.75	50.9415	0.1
24	Chromium	Cr-50	49.946 044	4.345	51.9961	7.19
		Cr-52	51.940 508	83.789		
		Cr-53	52.940 649	9.501		
		Cr-54	53.938 880	2.365		
25	Manganese	Mn-55	54.938 045	100	54.9380	7.43
26	Iron	Fe-54	53.939 611	5.845	55.8450	7.87
		Fe-56	55.934 938	91.754		
		Fe-57	56.935 394	2.119		
		Fe-58	57.933 276	0.282		
27	Cobalt	Co-59	58.933 195	100	58.9332	8.8
28	Nickel	Ni-58	57.935 343	68.0769	58.6934	8.9
		Ni-60	59.930 786	26.2231		
		Ni-61	60.931 056	1.1399		
		Ni-62	61,928,345	3.6345		
		Ni-64	63.927 966	0.9256		
29	Conner	Cu-63	62 929 598	69 15	63 5460	8 96
25	copper	Cu-65	64.927 790	30.85	00.0100	0.50
30	Zinc	Zn-64	63.929 142	48.268	65.3800	7.133
		Zn-66	65.926 033	27.975		
		Zn-67	66.927 127	4.102		
		Zn-68	67.924 844	19.024		
		Zn-70	69.925 319	0.631		
31	Gallium	Ga-69	68.925 574	60.108	69.7230	5.91
		Ga-71	70.924 701	39.892		
32	Germanium	Ge-70	69.924 247	20.38	72.6400	5.36
		Ge-72	71.922 076	27.31		
		Ge-73	72.923 459	7.76		
		Ge-74	73.921 178	36.72		
		Ge-/6	/5.921 403	7.83		

Table 1.	Atomic weights,	isotope abundances	, and densities for	r the elements.
----------	-----------------	--------------------	---------------------	-----------------

Density	Standard	Isotope	Relative		Element	Atomic
(g/cm ³)	Atomic Weight	Abundance (%)	Atomic Mass	Isotope	Name	Number
5.73	74.9216	100	74.921 597	As-75	Arsenic	33
4.81	78.9600	0.89	73.922 476	Se-74	Selenium	34
_		9.37	75.919 214	Se-76		-
		7.63	76 919 914	Se-77		
		23 77	77 917 309	Se-78		
		49.61	79 916 521	Se-80		
		8.73	81.916 699	Se-82		
7.60E-03	79.9040	50.69	78.918 337	Br-79	Bromine	35
		49.31	80.916 291	Br-81		
3.70E-03	83.7980	0.355	77.920 365	Kr-78	Krypton	36
		2.286	79.916 379	Kr-80	<i>,</i> ,	
		11.593	81.913 484	Kr-82		
		11.500	82.914 136	Kr-83		
		56.987	83,911 507	Kr-84		
		17.279	85.910 611	Kr-86		
1.53	85.4678	72.17	84.911 790	Rb-85	Rubidium	37
		27.83	86.909 181	Rb-87		
2.6	87.6200	0.56	83.913 425	Sr-84	Strontium	38
		9.86	85.909 260	Sr-86		
		7.00	86.908 877	Sr-87		
		82.58	87.905 612	Sr-88		
5.51	88.9059	100	88.905 848	Y-89	Yttrium	39
6.5	91.2240	51.45	89.904 704	Zr-90	Zirconiim	40
		11.22	90.905 646	Zr-91		
		17.15	91.905 041	Zr-92		
		17.38	93.906 315	Zr-94		
		2.80	95.908 273	Zr-96		
8.57	92.9064	100	92.906 378	Nb-93	Niobium	41
10.2	95.960	14.77	91.906 811	Mo-92	Molybdenum	42
		9.23	93.905 088	Mo-94		
		15.9	94.905 842	Mo-95		
		16.68	95,904 680	Mo-96		
		9.56	96.906 022	Mo-97		
		24.19	97,905 408	Mo-98		
		9.67	99.907 477	Mo-100		
11.0	[98]		96.906 365	Tc-96	Technetium	43
			97.097 216	Tc-97		
			98.906 255	Tc-98		
12.2	101.070	5.54	95.907 598	Ru-96	Ruthenium	44
		1.87	97.905 287	Ru-98		
		12.76	98.905 939	Ru-99		
		12.60	99.904 220	Ru-100		
		17.06	100.905 582	Ru-101		
		31.55	101.904 349	Ru-102		

Table 1.	Atomic weights,	isotope abun	dances, and d	lensities for t	he elements.
----------	-----------------	--------------	---------------	-----------------	--------------

Atomic	Element		Relative	Isotope	Standard	Density
Number	Name	Isotope	Atomic Mass	Abundance (%)	Atomic Weight	(g/cm³)
45	Rhodium	Rh-103	102.905 504	100	102.910	12.41
46	Palladium	Pd-102	101.905 609	1.02	106.420	12.0
		Pd-104	103.904 036	11.14		
		Pd-105	104.905 085	22.33		
		Pd-106	105.903 486	27.33		
		Pd-108	107.903 892	26.46		
		Pd-110	109.905 153	11.72		
47	Silver	Ag-107	106.905 097	51.839	107.870	10.49
		Ag-109	108.904 752	48.161		
48	Cadmium	Cd-106	105.906 459	1.25	112.410	8.65
		Cd-108	107.904 184	0.89		
		Cd-110	109.903 002	12.49		
		Cd-111	110.904 178	12.80		
		Cd-112	111.902 758	24.13		
		Cd-113	112.904 402	12.22		
		Cd-114	113.903 359	28.73		
		Cd-116	115.904 756	7.49		
49	Indium	In-113	112.904 058	4.29	114.818	7.31
		In-115	114.903 878	95.71		
50	Tin	Sn-112	111.904 818	0.97	118.710	7.298
		Sn-114	113.902 779	0.66		
		Sn-115	114.903 342	0.34		
		Sn-116	115.901 741	14.54		
		Sn-117	116.902 952	7.68		
		Sn-118	117.901 603	24.22		
		Sn-119	118.903 308	8.59		
		Sn-120	119.902 195	32.58		
		Sn-122	121.903 439	4.63		
		Sn-124	123.905 274	5.79		
51	Antimony	Sb-121	120.903 816	57.21	121.76	6.62
		Sb-123	122.904 214	42.79		
52	Tellurium	Te-120	119.904 020	0.09	127.60	6.24
		Te-122	121.903 044	2.55		
		Te-123	122.904 270	0.89		
		Te-124	123.902 818	4.74		
		Te-125	124.904 431	7.07		
		Te-126	125.903 312	18.84		
		Te-128	127.904 463	31.74		
		Te-130	129.906 224	34.08		
53	lodine	I-127	126.904 473	100	126.90	1.13E-02
54	Xenon	Xe-124	123.905 893	0.0952	131.29	5.90E-03
		Xe-126	125.904 274	0.0890		
		Xe-128	127.903 531	1.9102		
		xe-129	128.904 779	26.4006		
		xe-130	129.903 508	4.0710		
		Xe-131	130.905 082	21.2324		
		Xe-132	131.904 154	26.9086		
		Xe-134	135.905 395	10.4357		
		xe-136	135.907 219	8.8573		

Table 1.	Atomic weights,	isotope abun	dances, and d	lensities for t	he elements.
----------	-----------------	--------------	---------------	-----------------	--------------

Atomic	Element		Relative	Isotope	Standard	Density
Number	Name	Isotope	Atomic Mass	Abundance (%)	Atomic Weight	, (g/cm³)
55	Cesium	Cs-133	132.905 452	100	132.91	1.87
56	Barium	Ba-130	129 906 321	0 106	137 33	35
50	banam	Ba-132	131 905 061	0.100	137.33	5.5
		Ba-13/	133,904,508	2 / 17		
		Ba-135	134 905 689	6 5 9 2		
		Ba-135 Ba-136	135 904 576	7 854		
		Ba-137	136 905 827	11 232		
		Ba-138	137.905 247	71.698		
F 7	Lanthanum	12 129	127 007 112	0.00	120.01	6 10
57	Lanunanum	Ld-138	137.907 112	0.09	138.91	0.19
		La-139	138.906 353	99.91		
58	Cerium	Ce-136	135.907 172	0.185	140.12	6.78
		Ce-138	137.905 991	0.251		
		Ce-140	139.905 439	88.450		
		Ce-142	141.909 244	11.114		
59	Praseodymium	Pr-141	140.907 653	100	140.91	6.78
60	Neodymium	Nd-142	141.907 723	27.2	144.24	6.98
	,	Nd-143	142.909 814	12.2		
		Nd-144	143.910 088	23.8		
		Nd-145	144.912 574	8.3		
		Nd-146	145.913 117	17.2		
		Nd-148	147.916 893	5.7		
		Nd-150	149.920 891	5.6		
61	Promethium	Pm-145	144.912 749		[145]	7.26
-		Pm-147	146.915 139		L - J	
62	Samarium	Sm-144	143.911 999	3.07	150.36	6.93
		Sm-147	146.914 898	14.99		
		Sm-148	147.914 823	11.24		
		Sm-149	148.917 185	13.82		
		Sm-150	149.917 276	7.38		
		Sm-152	151,919 732	26.75		
		Sm-154	153.922 209	22.75		
63	Europium	Eu-151	150.919 850	47.81	151.96	5.22
	·	Eu-153	152.921 230	52.19		
64	Gadolinium	Gd-152	151.919 791	0.20	157.25	7.95
		Gd-154	153.920 866	2.18		
		Gd-155	154.922 622	14.80		
		Gd-156	155.922 123	20.47		
		Gd-157	156.923 960	15.65		
		Gd-158	157.924 104	24.84		
		Gd-160	159.927 054	21.86		
65	Terbium	Tb-159	158.925 347	100	158.93	8.33
66	Dysprosium	Dy-156	155.924 283	0.056	162.50	8.56
		Dy-158	157.924 409	0.095		
		Dy-160	159.925 198	2.329		
		Dy-161	160.926 933	18.889		
		Dy-162	161.926 798	25.475		
		Dy-163	162.928 731	24.896		
		Dy-164	163.929 175	28.260		
	Terbium Dysprosium	Gd-158 Gd-160 Tb-159 Dy-156 Dy-158 Dy-160 Dy-161 Dy-162 Dy-163 Dy-164	157.924 104 159.927 054 158.925 347 155.924 283 157.924 409 159.925 198 160.926 933 161.926 798 162.928 731 163.929 175	24.84 21.86 100 0.056 0.095 2.329 18.889 25.475 24.896 28.260	158.93 162.50	8.33

Table 1.	Atomic weights,	isotope abun	dances, and d	lensities for t	he elements.
----------	-----------------	--------------	---------------	-----------------	--------------

Density	Standard	Isotope	Relative		Element	Atomic
(g/cm³)	Atomic Weight	Abundance (%)	Atomic Mass	Isotope	Name	Number
8.76	164.93	100	164.930 322	Ho-165	Holmium	67
9.16	167.26	0.139	161,928 778	Fr-162	Frbium	68
0120	207.20	1 601	163 929 200	Er-164	2.0.0	
		33 503	165 930 293	Er-166		
		22 869	166 932 048	Er 100 Fr-167		
		26.978	167 932 370	Er 167 Fr-168		
		14.910	169.935 464	Er-170		
9.35	168.93	100	168.934 213	Tm-169	Thulium	69
7.01	172.05	0.12	167 022 907	Vh 169	Vttorbium	70
7.01	175.05	2.04	160 024 762	70-108 Vb 170	THEIDIUM	70
		5.04	109.954 702	10-170 Vb 171		
		14.28	170.936 326	YD-1/1		
		21.83	171.936 382	YD-172		
		16.13	172.938 211	YD-1/3		
		31.83 12.76	173.938 862 175 942 572	Yb-174 Yb-176		
		12.70	175.542 572	15 170		
9.74	174.97	97.41	174.940 772	Lu-175	Lutetium	71
		2.59	175.942 686	Lu-176		
13.36	178.49	0.16	173.940 046	Hf-174	Hafnium	72
		5.26	175.941 409	Hf-176		
		18.60	176.943 221	Hf-177		
		27.28	177.943 699	Hf-178		
		13.62	178.945 816	Hf-179		
		35.08	179.946 550	Hf-180		
16.6	180.95	0.012	179.947 465	Ta-180	Tantalum	73
		99.988	180.947 996	Ta-181		
19.2	183.84	0.12	179.946 704	W-180	Tungsten	74
		26.50	181,948,204	W-182		
		14 31	182 950 223	W-183		
		30.64	183 950 931	W-183		
		28.43	185.954 364	W-184 W-186		
20.0	196 21	27.40	194 052 055	Do 195	Dhanium	75
20.0	100.21	57.40	104.952 955	RE-105	KIIEIIIUIII	75
		02.00	180.955 753	RE-187		
22.5	190.23	0.02	183.952 489	Os-184	Osmium	76
		1.59	185.953 838	Os-186		
		1.96	186.955 751	Os-187		
		13.24	187.955 838	Os-188		
		16.15	188.958 148	Os-189		
		26.26	189.958 447	Os-190		
		40.78	191.961 481	Os-192		
22.5	192.22	37.30	190.960 594	lr-191	Iridium	77
		62.70	192.962 926	Ir-193		
21.45	195.08	0.014	189.959 932	Pt-190	Platinum	78
		0.782	191.961 038	Pt-192		
		32.967	193.962 680	Pt-194		
		33.832	194.964 791	Pt-195		
		25.242	195.964 952	Pt-196		
		7.163	197.967 893	Pt-198		

Table 1.	Atomic weights,	isotope abundances,	and densities for	the elements.
----------	-----------------	---------------------	-------------------	---------------

Atomic	Element		Relative	Isotope	Standard	Density
Number	Name	Isotope	Atomic Mass	Abundance (%)	Atomic Weight	(g/cm ³)
79	Gold	Au-197	196.966 569	100	196.97	19.32
80	Mercury	Hg-196	195.965 833	0.15	200.59	13.55
	,	Hg-198	197.966 769	9.97		
		Hg-199	198,968,280	16.87		
		Hg-200	199.968 326	23.10		
		Hg-201	200.970 302	13.18		
		Hg-202	201.970 643	29.86		
		Hg-204	203.973 494	6.87		
81	Thallium	TI-203	202.972 344	29.52	204.38	11.85
01		TI-205	204.974 428	70.48		11.00
82	Lead	Pb-204	203.973 044	1.4	207.20	11.34
01	2000	Pb-206	205.974 465	24.1	207.20	
		Pb-207	206 975 897	27.1		
		Pb-208	207.976 652	52.4		
			207.570 052	52.1		
83	Bismuth	Bi-209	208.980 399	100	208.98	9.8
84	Polonium	Po-209	208.982 430		[209]	9.2
		Po-210	209.982 874			
85	Astatine	At-210	209.987 148		[210]	
		At-211	210.987 496			
86	Radon	Rn-222	222.017 578		[222]	5.5
87	Francium	Fr-223	223.019 736		[223]	1.87
88	Radium	Ra-223	223.018 502		[226]	5.5
		Ra-224	224.020 212			
		Ra-226	226.025 410			
		Ra-228	228.031 070			
89	Actinium	Ac-227	227.027 752		[227]	10.0
90	Thorium	Th-230	230.033 134		232.04	11.71
		Th-232	232.038 055	100		
91	Protactinium	Pa-231	231.035 884		231.04	15.37
92	Uranium	U-233	233.039 635		238.03	19.1
		U-234	234.040 952	0.0055		
		U-235	235.043 930	0.7200		
		U-236	236.045 568			
		U-238	238.050 788	99.2745		
93	Neptunium	Np			[237]	20.45
94	Plutonium	Pu			[244]	19.82
95	Americium	Am			[243]	12.00
96	Curium	Cm			[247]	13.51
97	Berkelium	Bk			[247]	14.78
98	Californium	Cf			[251]	15.1

Table 2. Relative abundances of the naturally-occurring isotopes.

Mass Number		%	%		9	%	Mass Number		%		%	%	Mass Number	%		%	6		%	Mass Number	ç	%	9	6	%	
1	н	99,985					61					Ni 1.14	121					Sb	57.36	181	Та	99,988				
2	н	0.015					62					Ni 3.634	122	Sn 4.	.63	Te	2.603	55	37.30	182	14	55.500	W	26.3		
3			He 0.	.00014			63	Cu	69.17				123	-		Те	0.908	Sb	42.64	183			W	14.3		
4			He 99	9.9999			64			Zn	48.6	Ni 0.926	124	Sn 5.	.79	Те	4.816	Xe	0.10	184	Os	0.02	W	30.67		
5							65	Cu	30.83				125			Те	7.139			185					Re	37.4
6					Li	7.5	66			Zn	27.9		126			Те	18.95	Xe	0.09	186	Os	1.58	W	28.6		
7					Li	92.5	67			Zn	4.1		127	I 1	.00					187	Os	1.6			Re	82.6
8							68			Zn	18.8		128			Те	31.69	Xe	1.91	188	Os	13.3				
9	Ве	100					69					Ga 60.108	129					Xe	26.4	189	Os	16.1				
10			В	19.9			70	Ge	21.23	Zn	0.6		130	Ba 0.1	106	Те	33.6	Xe	4.1	190	Os	26.4			Pt	0.01
11			В	80.1	_		71	_				Ga 39.892	131					Xe	21.2	191			lr	37.3		_
12					C	98.90	72	Ge	27.66				132	Ba 0.1	101			Xe	26.9	192	Os	41.0		co =	Pt	0.79
13		00 6 4 2			C	1.10	73	Ge	7.73	6.	0.00		133	D. 0.		Ċs	100	N.	10.4	193			Ir	62.7	D .	22.0
14	N	99.643					74	Ge	35.94	Se	0.69	Ac 100	134	Ba 2.4	417 502			xe	10.4	194					Pt D+	32.9
15	IN	0.300	0 0	0 762			75	Go	7 4 4	50	0.26	AS 100	135	Bd 0.3	592 обл	Co	0.10	Vo	<u> </u>	195	Цa	0.15			PL D+	33.8 25.2
10				0.020			70 77	Ge	7.44	Se So	9.50		127	Dd 7.0	004 ⊨02	Ce	0.19	Xe	0.9	190	пg	0.15	Δ	100	Ρl	25.5
17				0.038			78	Kr	0 35		7.05		132	Dd 11 Ra 71	70	Ce	0.25	12	0 0902	197	Нσ	9 97	Au	100	D+	72
10			0.0	0.200	F	100	70	NI NI	0.55	JC	23.70	Br 50.69	130	Da /1		cc	0.25	La	99 9098	199	на На	16.87			10	7.2
20	Ne	90.48				100	80	Kr	2.25	Se	49.61	50.05	140			Ce	88.48	Lu	55.5656	200	Нр	23.10				
21	Ne	0.27					81		2.20		10101	Br 49.31	141				00110	Pr	100	201	Hg	13.18				
22	Ne	9.25					82	Kr	11.6	Se	8.73		142	Nd 27	7.13	Ce	11.08			202	Hg	29.86				
23			Na	100			83	Kr	11.5				143	Nd 12	2.18					203	0				TI 2	29.524
24					Mg	78.99	84	Kr	57.0	Sr	0.56		144	Nd 23	3.80	Sm	3.1			204	Hg	6.87	Pb	1.4		
25					Mg	10.00	85					Rb 72.185	145	Nd 8.	.30					205					TI 7	70.476
26					Mg	11.01	86	Kr	17.3	Sr	9.86		146	Nd 17	7.19					206			Pb	24.1		
27	AI	100					87			Sr	7.00	Rb 27.835	147			Sm	15.0			207			Pb	22.1		
28			Si S	92.23			88			Sr	82.58		148	Nd 5.	.76	Sm	11.3			208			Pb	52.4		
29			SI	4.67			89					Y 100	149			Sm	13.8			209	Bi	100				
30			Si	3.10			90	Zr	51.45				150	Nd 5.	.64	Sm	7.4			210						
31					Р	100	91	Zr	11.22				151					Eu	47.8	211						
32	S	95.02					92	Zr	17.15	Mo	14.84	NH 100	152	Gd 0.	.20	Sm	26.7	-	52.2	212						
33	5	0.75					93	7~	17 20	Ma	0.25	001 d <i>n</i>	153		10	C m	22.7	EU	52.2	213						
25 25	3	4.21	ci -	75 77			94	21	17.50	Mo	9.25		154	Gu 2.		3111	22.7			214						
38	ς	0.02		/ 5.//	Δr	0 337	96	7r	2 80	Mo	15.52	Ru 5.52	155	Gd 20	1.00	Dv	0.06			215						
37	5	0.02	CI 2	24.23	7.0	0.557	97	21	2.00	Mo	9.55	10 5.52	157	Gd 15	5.65	Dy	0.00			217						
38					Ar	0.063	98			Mo	24.13	Ru 1.88	158	Gd 24	1.84	Dv	0.10			218						
39	К	93.2581					99					Ru 12.7	159			,		Тb	100	219						
40	К	0.0117	Ca 9	6.941	Ar	99.600	100			Mo	9.63	Ru 12.6	160	Gd 21	.86	Dy	2.34			220						
41	К	6.7302					101					Ru 17.0	161			Dy	18.9			221						
42			Ca C	0.647			102	Pd	1.02			Ru 31.6	162	Er 0.	.14	Dy	25.5			222						
43			Ca (0.135			103			Rh	100		163			Dy	24.9			223						
44			Ca 2	2.086			104	Pd	11.14			Ru 18.7	164	Er 1.	.61	Dy	28.2			224						
45					Sc	100	105	Pd	22.33				165					Но	100	225						
46	Ti	8.0	Ca C	0.004			106	Pd	27.33	Cd	1.25		166	Er 33	3.6					226						
4/	 :	7.3	C - C	0 1 0 7			107	Dal	26.46	Cal	0.00	Ag 51.839	16/	Er 22	2.95	Vh	0.12			22/						
48	 т:	/3.8	Cal	0.187			108	Ра	26.46	Ca	0.89	Ac 10 1 C 1	168	Er 20	6.8	YD	0.13	Tm	100	228						
49 50	ті	5.5	V	0.25	Cr	1 3 1 5	109	Ъd	11 72	Cd	12/10	Ag 40.101	109	Fr 1/	۸۵	Vh	3.05		100	229						
50		5.4	v	99 75	CI	4.545	110	ru	11.72	Cd Cd	12.49		170	LI 1.	4.5	Yh	3.03 14 3			230	Pa	100				
52			v		Cr	83.789	112	Sn	0.97	Cd	24.13		172			Yb	21.9			232	Th	100				
53					Cr	9.501	113	0.1	2.27	Cd	12.22	In 4.3	173			Yb	16.12			233						
54	Fe	5.80			Cr	2.365	114	Sn	0.65	Cd	28.73		174			Yb	31.8	Hf	0.162	234	U	0.0055				
55			Mn	100			115	Sn	0.34			ln 95.7	175	Lu 97	7.41					235	U	0.7200				
58	Fe	91.72					116	Sn	14.53	Cd	7.49		176	Lu 2.	.59	Yb	12.7	Hf	5.206	236						
57	Fe	2.20					117	Sn	7.68				177					Hf	18.606	237						
58	Fe	0.28			Ni	68.077	118	Sn	24.23				178					Hf	27.297	238	U	99.2745				
59			Со	100			119	Sn	8.59				179					Hf	13.629							
80					Ni	26.223	120	Sn	32.59	Те	0.096		180	Ta 0.0	012	W	0.13	Hf	35.100							

Table 3. Energies of the principal K-, L-, and M-shell X-rays in keV.

Z		Element Name	Κα1	Κβ1	Lα ₁	Lβ1	Z		Element Name	Κα1	Кβ1	Lα ₁	Lβ1	Μα ₁	Μβ1
10	Ne	Neon	0.85				53	I	Iodine	28.61	32.29	3.94	4.22		
11	Na	Sodium	1.04				54	Xe	Xenon	29.78	33.62	4.11	4.42		
12	Mg	Magnesium	1.25	1.30			55	Cs	Cesium	30.97	34.98	4.29	4.62		
13	AI	Aluminum	1.49	1.56			56	Ва	Barium	32.19	36.38	4.47	4.83		
14	Si	Silicon	1.74	1.84			57	La	Lanthanum	33.44	37.80	4.65	5.04		
15	Р	Phosphorus	2.01	2.14			58	Ce	Cerium	34.72	39.26	4.84	5.26		
16	Si	Sulfur	2.31	2.47			59	Pr	Praseodymium	36.03	40.75	5.04	5.49		
17	CI	Chlorine	2.62	2.81			60	Nd	Neodymium	37.36	42.27	5.23	5.72		
18	Ar	Argon	2.96	3.19			61	Pm	Promethium	38.73	43.83	5.43	5.96		
19	к	Potassium	3.31	3.59			62	Sm	Samarium	40.12	45.41	5.63	6.20		
20	Ca	Calcium	3.69	4.01	0.34	0.35	63	Eu	Europium	41.54	47.04	5.85	6.46		
21	Sc	Scandium	4.09	4.46	0.40	0.40	64	Gd	Gadolinium	43.00	48.70	6.05	6.71		
22	Ti	Titanium	4.51	4.93	0.45	0.46	65	Tb	Terbium	44.48	50.39	6.27	6.98	1.24	1.27
23	v	Vanadium	4.95	5.43	0.51	0.52	66	Dy	Dysprosium	46.00	52.11	6.50	7.25	1.29	1.33
24	Cr	Chromium	5.42	5.95	0.57	0.58	67	Ho	Holmium	47.55	53.88	6.72	7.53	1.35	1.38
25	Mn	Manganese	5.90	6.49	0.64	0.65	68	Er	Erbium	49.13	55.67	6.95	7.81	1.40	1.45
26	Fe	Iron	6.41	7.06	0.71	0.72	69	Tm	Thulium	50.74	57.51	7.18	8.10	1.46	1.50
27	Со	Cobalt	6.93	7.65	0.78	0.79	70	Yb	Ytterbium	52.39	59.38	7.42	8.40	1.53	1.57
28	Ni	Nickel	7.48	8.27	0.85	0.87	71	Lu	Lutetium	54.07	61.29	7.66	8.71	1.58	1.63
29	Cu	Copper	8.05	8.90	0.93	0.95	72	Hf	Hafnium	55.79	63.24	7.90	9.02	1.65	1.70
30	Zn	Zinc	8.64	9.57	1.01	1.04	73	Та	Tantalum	57.54	65.22	8.15	9.34	1.71	1.77
31	Ga	Gallium	9.25	10.27	1.10	1.13	74	w	Tungsten	59.32	67.24	8.40	9.67	1.78	1.84
32	Ge	Germanium	9.89	10.98	1.19	1.22	75	Re	Rhenium	61.14	69.31	8.65	10.01	1.84	1.91
33	As	Arsenic	10.54	11.73	1.28	1.32	76	Os	Osmium	63.00	71.41	8.91	10.35	1.91	1.98
34	Se	Selenium	11.22	12.50	1.38	1.42	77	lr	Iridium	64.90	73.56	9.18	10.71	1.98	2.05
35	Br	Bromine	11.92	13.29	1.48	1.53	78	Pt	Platinum	66.83	75.75	9.44	11.07	2.05	2.13
36	Kr	Krypton	12.65	14.11	1.59	1.64	79	Au	Gold	68.81	77.98	9.71	11.44	2.12	2.20
37	Rb	Rubidium	13.40	14.96	1.69	1.75	80	Hg	Mercury	70.82	80.26	9.99	11.82	2.20	2.28
38	Sr	Strontium	14.17	15.84	1.81	1.87	81	TÎ	Thallium	72.87	82.57	10.27	12.21	2.27	2.36
39	Y	Yttrium	14.96	16.74	1.92	2.00	82	Pb	Lead	74.97	84.94	10.55	12.61	2.34	2.44
40	Zr	Zirconium	15.78	17.67	2.04	2.13	83	Bi	Bismuth	77.11	87.35	10.84	13.02	2.42	2.53
41	Nb	Niobium	16.62	18.63	2.17	2.26	84	Ро	Polonium	79.29	89.80	11.13	13.45	2.50	2.61
42	Мо	Molybdenum	17.48	19.61	2.29	2.39	85	St	Astatine	81.52	92.30	11.43	13.88	2.58	2.70
43	Тс	Technetium	18.37	20.63	2.42	2.54	86	Rn	Radon	83.79	94.89	11.73	14.32	2.65	2.78
44	Ru	Ruthenium	19.28	21.66	2.56	2.68	87	Fr	Francium	86.11	97.47	12.03	14.77	2.73	2.87
45	Rh	Rhodium	20.22	22.72	2.70	2.83	88	Ra	Radium	88.48	100.13	12.34	15.24	2.81	2.95
46	Pd	Palladium	21.18	23.82	2.84	2.99	89	Ac	Actinium	90.88	102.85	12.65	15.71	2.90	3.05
47	Ag	Sliver	22.16	24.94	2.98	3.15	90	Th	Thorium	93.35	105.61	12.97	16.20	3.00	3.15
48	Cď	Cadmium	23.17	26.09	3.13	3.32	91	Ра	Protactinium	95.87	108.43	13.29	16.70	3.08	3.24
49	In	Indium	24.21	27.28	3.29	3.49	92	U	Uranium	98.44	111.30	13.61	17.22	3.17	3.34
50	Sn	Tin	24.27	28.49	3.44	3.66	93	Np	Neptunium	101.06	114.23	13.95	17.75	3.25	3.44
51	Sb	Antimony	26.36	29.73	3.60	3.84	94	Pu	Plutonium	103.73	117.23	14.28	18.30	3.34	3.53
52	Те	Tellerium	27.47	30.99	3.77	4.03	95	Am	Americium	106.47	120.28	14.62	18.86	3.44	3.65
52	ie	reneriuili	۷/.4/	30.33	5.77	4.05	33	AIII	Americium	100.47	120.20	14.02	10.00	5.44	3

Target	Product	Product		Target Isotope	Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
H-1	H-2	stable	.,	0.999885	0.3326	
H-2	H-3	12.3	У	0.000115	0.000508	
He-3	He-4	stable		0.00000137	0.000055	
He-3	p + H-3	12.3	У	0.00000137	5333	2400
Li-6	α + H-3	12.3	у	0.0759	940	425
Li-6	Li-7	stable		0.0759	0.0393	0.0177
Li-7	α + α	0.8	S	0.9241	0.0442	0.02
Be-9	Be-10	1.51E+06	у	1.0000	0.00827	0.0037
B-10	α + Li-7 [*]	stable		0.199	3837	1722
B-11	B-12	0.02	S	0.801	0.009	0.0043
C-12	C-13	stable		0.9893	0.00387	0.00183
C-13	C-14	5730	у	0.0107	0.0015	0.0011
N-1/	N-15	stable		0 99632	0.0801	0.036
N-14 N-14	n+C-14	5730	v	0.99032	1.83	0.050
N-15	N-16	7.13	y S	0.00368	0.000024	0.00011
	11 10	,.10	5	0.00000	0.000021	
O-16	0-17	stable		0.99757	0.00019	0.00027
0-17	0-18	stable		0.00038	0.000538	0.00041
0-18	0-19	26.91	S	0.00205	0.00016	0.00081
F-19	F-20	11	s	1.0000	0.00951	0.018
Ne-20	Ne-21	stable		0.9048	0.037	0.0165
Ne-21	Ne-22	stable		0.0027	0.666	0.296
Ne-22	Ne-23	37.24	S	0.0925	0.0527	0.0006
Na-23	Na-24	14.96	h	1.0000	0.525	0.312
Mg-24	Mg-25	stable		0.7899	0.0538	0.030
Mg-25	Mg-26	stable		0.1000	0.199	0.104
Mg-26	Mg-27	9.46	m	0.1101	0.0374	0.020
Al-27	Al-28	2.24	m	1.0000	0.231	0.136
Si-28	Si-29	stable		0.922297	0.177	0.080
Si-29	Si-30	stable		0.046832	0.119	0.081
Si-30	Si-31	2.62	h	0.030872	0.107	0.098
P-31	P-32	14.26	d	1.0000	0.166	0.079
S-32	S-33	stable		0.9493	0.518	0.246
S-32	α + Si-29	stable		0.9493	0.007	
S-33	S-34	stable		0.0076	0.454	0.221
S-33	p + P-33	25.3	d	0.0076	2	
S-33	α + Si-30	stable		0.0076	0.115	
S-34	S-35	87.32	d	0.0429	0.256	0.105
S-36	S-37	5.05	m	0.0002	0.236	0.17
Cl-35	Cl-36	3.00E+05	у	0.7578	43.6	17.9
CI-35	p + S-35	87.32	d	0.7578	0.489	0.554
CI-35	α + P-32	14.26	d	0.7578	0.00008	
CI-37	CI-38	37.24	m	0.2422	0.433	0.3
Ar-36	Ar-37	35.04	d	0.003365	5.2	
Ar-38	Ar-39	269	у	0.000632	0.8	
Ar-40	Ar-41	1.82	h	0.996003	0.66	0.41

Target	Product	Product		Target Isotope	Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
K-30	K-40	stable		0 032581	21	1 1
к 35 к-40	K-41	stable		0.000117	38	13
K-40	n + Ar-40	stable		0.000117	4 4	20
K-40	α + Cl-37	stable		0.000117	0.39	
K-41	K-42	12.36	h	0.067302	1.46	0.98
Ca-40	Ca-41	1.03E+05	у	0.96941	0.41	0.21
Ca-42	Ca-43	stable		0.00647	0.68	0.39
Ca-43	Ca-44	stable	-1	0.00135	6.2	3.98
Ca-44	Ca-45	162.61	a	0.02086	0.88	0.415
Ca-46	Ca-47	4.54	a	0.00004 100% of Ca-17 decays in	0.74 to Sc-47	0.96
Co 19	Co 10	0 70	m	0 00197	1 00	0.80
Ca-40	Ca-49	0.72		100% of Ca-49 decays in	to Sc-49	0.85
Sc-45	Sc-46	83.79	d	1.0000	17.4	7.0
Sc-45	Sc-46m	18.75	S	1.0000	9.8	5.1
				100% of Sc-46m decays	into Sc-46	
Ti-46	Ti-47	stable		0.0825	0.59	0.34
Ti-47	Ti-48	stable		0.0744	1.63	1.5
Ti-48	Ti-49	stable		0.7372	8.32	3.9
Ti-49	Ti-50	stable		0.0541	1.87	1.2
Ti-50	Ti-51	5.76	m	0.0518	0.179	0.09
V-50	V-51	stable		0.0025	40.8	61
V-51	V-52	3.74	m	0.9975	4.94	2.7
	0.54					
Cr-50	Cr-51	27.7	d	0.04345	14.7	7.2
Cr-52	Cr-53	stable		0.83789	0.86	0.66
Cr-53	Cr-54	stable		0.09501	18.6	8.66
Cr-54	Cr-55	3.5	m	0.02365	0.41	0.20
Mn-55	Mn-56	2.58	h	1.0000	13.36	13.3
Fe-54	Fe-55	2.73	у	0.05845	2.30	1.27
Fe-56	Fe-57	stable		0.91754	2.59	1.37
Fe-57	Fe-58	stable		0.02119	2.48	1.51
Fe-58	Fe-59	44.5	d	0.00282	1.32	1.50
Co-59	Co-60	5.27	v	1.0000	17.1	34.8
Co-59	Co-60m	10.47	m	1.0000	20.1	39.7
				99.76% of Co-60m decay	ys into Co-60	
Ni-58	Ni-59	7 60F+04	v	0 680769	4 39	2 1
Ni-60	Ni-61	stable	,	0.262231	2.45	1.24
Ni-61	Ni-62	stable		0.011399	2.1	1.8
Ni-62	Ni-63	100.1	v	0.036345	14.9	7.38
Ni-64	Ni-65	2.52	ĥ	0.009256	1.63	1.07
 Cu-63	Cu-64	12 7	h	0 6917	4 5	4 97
Cu-65	Cu-66	5.12	m	0.3083	2.17	2.19
	7n 65	244.26	4	0.4862	0.721	1 27
Zn-66	Zn-67	244.20 stahla	u	0.4005 A 279	0.731	1.37 N 92
Zn-67	Zn-68	stable		0.275	7 5	25.4
Zn-68	Zn-69	56.4	m	0.1875	1 1	25.4
Zn-68	Zn-69m	13 76	h	0.1875	0.072	0.24
	2.1.05111	13.70		99.97% of Zn-69m decay	/s into Zn-69	0.27
Zn-70	Zn-71	2.45	m	0.0062	0.092	0.96
Zn-70	Zn-71m	3.96	h	0.0062	0.0087	0.04
Zn-71m	Zn-72	46.5	h		0.059	0.07
Ga-69	Ga-70	21 1/	m	0.60108	1 92	15 9
Ga-71	Ga-72	14 1	h	0.39892	4.62	32.3
		17.1	••	0.00002		02.0

Target	Product	Product		Target Isotope	Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
Ge-70	Ge-71	11.43	d	0.2084	3.05	2,39
Ge-72	Ge-73	stable		0.2754	0.89	0.86
Ge-73	Ge-74	stable		0.0773	14.7	64
Ge-74	Ge-75	82.78	m	0.3628	0.34	0.43
Ge-74	Ge-75m	47.7	s	0.3628	0.16	0.33
				99.97% of Ge-75m decay	ys into Ge-75	
Ge-76	Ge-77	11.3	h	0.0761	0.06	0.86
				100% of Ge-77 decays in	to As-77	
Ge-76	Ge-77m	52.9	S	0.0761	0.10	1.00
				19.0% of Ge-77m decays	s into Ge-77	
				81.0% of Ge-77m decays	s into As-77	
As-75	As-76	26.32	h	1.0000	4.09	63
As-76	As-77	38.8	h		60.8	216.1
So-71	So_75	110 78	Ь	0.0089	52.2	576
Se-76	Se-77	stable	u	0.0005	62.8	17 /
Se-76	Se-77m	17 36	s	0.0937	22	17
Se-77	Se-78	stable	5	0.0763	41 5	32.3
Se-78	Se-79	stable		0.2377	0.05	0.8
Se-78	Se-79m	3 92	m	0.2377	0.38	3.7
50 70	567511	5.52		99.94% of Se-79m decay	rs into Se-79	5.7
Se-80	Se-81	18.45	m	0.4961	0.53	1.6
Se-80	Se-81m	57.28	m	0.4961	0.08	0.34
				99.95% of Se-81m decay	vs into Se-81	
Se-82	Se-83	22.3	m	0.0873	, 0.0052	0.09
		-		100% of Se-83 decays int	to Br-83	
Se-82	Se-83m	70.1	s	0.0873	0.039	0.039
				100% of Se-83m decays	into Br-83	
Br-79	Br-80	17.68	m	0.5069	8.2	95
Br-79	Br-80m	4.42	h	0.5069	2.2	35
				100% of Br-80m decays i	into Br-80	
Br-81	Br-82	35.3	h	0.4931	0.26	15
Br-81	Br-82m	6.13	m	0.4931	2.10	31
				99.6% of Br-82m decays	into Br-82	
Kr-78	Kr-79	35.04	h	0.0035	47	26
Kr-80	Kr-81	2 29F+05	v	0.0228	11 5	57.4
Kr-82	Kr-83	stable	,	0.1158	19	156
Kr-83	Kr-84	stable		0.1149	197	160
Kr-84	Kr-85	10.76	v	0.5700	0.11	2.43
Kr-86	Kr-87	76.3	'n	0.1730	0.003	0.18
Rb-85	Rb-86	18.63	d	0.7217	0.427	5.7
Rb-85	Rb-86m	1.02	m	0.7217	0.067	1.1
Rh-87	Rb-88	17 78	m	100% of Rb-86m decays	0 116	2 38
	1.5 00	17.70		0.2705	0.110	2.50
Sr-84	Sr-85	64.84	d	0.0056	0.35	6.72
Sr-84	Sr-85m	67.63	m	0.0056	0.5	3.20
6 96	c 07			86.6% of Sr-85m decays	INTO Sr-85	
Sr-86	Sr-87	stable	,	0.0986	0.2	
Sr-86	Sr-87m	2.8	h	0.0986	0.84	4.88
607	6- 00			99.7% of Sr-87m decays	INTO ST-87	400
5r-87	Sr-88	stable	L	0.0700	16./	108
51-55	21-83	50.53	d	0.8258	0.0055	0.024
Y-89	Y-90	64	h	1.0000	1.28	0.96
Y-89	Y-90m	3.19	h	1.0000	0.001	0.006
				100% of Y-90m decays ir	nto Y-90	

Target Isotope	Product Isotope	Product Half-life	_	Target Isotope Abundance	Thermal Cross-section (b)	Resonance Integral (b)
Zr-90	Zr-91	stable		0.5145	0.014	0.13
Zr-91	Zr-92	stable		0.1122	1.30	8.3
Zr-92	Zr-93	1.53E+06	v	0.1715	0.131	0.47
Zr-94	Zr-95	64.02	, d	0.1738	0.0511	0.28
	2.00	0		98.9% of Zr-95 decays in	to Nb-95	0.20
				1.11% of 7r-95 decays in	to Nb-95m	
7r-96	7r-97	16 91	h	0.028	0.0211	5 28
	2. 07	10.01		3.2% of Zr-97 decays into	0.00000 Nb-97	0.20
				96.8% of Zr-97 decays in	to Nb-97m	
NP-03	Nb-94	2 03E+04	v	1 0000	0.3	2.00
Nb-03	Nb_94m	6.26	y m	1,0000	0.863	634
10.55		0.20		99 5% of Nb-94m decays	into Nh-94	0.54
	Nb-05	3/ 08	Ч		1/ 0	125
ND-94	ND-95	54.50 96.6	u h		14.9	125
ND-94	ND-95111	00.0		 04.4% of Nb 05m docays	unto Nh 95	
				94.4% OF ND-95111 UECays		
Mo-92	Mo-93	4.00E+03	у	0.1484	0.08	0.11
Mo-92	Mo-93m	6.85	h	0.1484	0.000002	0.8
				99.88% of Mo-93m deca	ys into Mo-93	
Mo-94	Mo-95	stable		0.0925	0.34	1.28
Mo-95	Mo-96	stable		0.1592	13.4	117
Mo-96	Mo-97	stable		0.1668	0.55	18.2
Mo-97	Mo-98	stable		0.0955	2.2	16.8
Mo-98	Mo-99	65.94	h	0.2413	0.13	6.7
				100% of Mo-99 decays ir	nto Tc-99m	
Mo-100	Mo-101	14.61	m	0.0963	0.199	3.76
				100% of Mo-101 decays	into Tc-101	
Ru-96	Ru-97	69 12	h	0.0554	0.25	7 34
Ru-98	Ru-99	stable		0.0187	8.0	
	Ru-100	stable		0.1276	7.25	172
	Ru-100 Pu 101	stable		0.1270	5.0	11.2
Ru-100	Ru-101	stable		0.1706	5.0	11.2
RU-101	Ru-102		А	0.1700	J.Z 1 J4	111
RU-102	RU-105	59.20	ս հ	0.1962	0.401	4.40
KU-104	Ku-105	4.44		100% of Ru-105 decays in	nto Rh-105	0.5
Rh-103	Rh-104	42.3	S	1.0000	143.5	1012
Kh-103	Rh-104m	4.34	m	1.0000	10	75
				99.87% of Rh-104m deca	iys into Kn-104	
Pd-102	Pd-103	16.99	d	0.0102	1.82	23
Pd-104	Pd-105	stable		0.1114	0.65	20.9
Pd-105	Pd-106	stable		0.2233	21	96.4
Pd-106	Pd-107	6.50E+06	у	0.2733	0.305	7.5
Pd-108	Pd-109	13.7	h	0.2646	8.57	244
Dd 100	Dd 100m	Λ ¬		100% OF PG-109 decays II	0 192	2.20
ra-108	Pa-109M	4./	m	U.2040	U.183	2.26
Dd 110	Dd 111	22.4		100% OI PO-109III 06C98	0 0 0	2.4
PU-110	P0-111	23.4	m	U.11/2	U.26	2.4
	D-1 444			100% UI PO-111 decays II		~ 7
Pa-110	Pa-111m	5.5	n	0.11/2	U.U37	0.7
				26.7% of Pd-111m decay 26.7% of Pd-111m decay	s into Pa-111 s into Ag-111	
				· · · · · · · · · · · · · · · · · · ·	~	
Ag-107	Ag-108	2.37	m	0.51839	34.8	107
Ag-109	Ag-110	24.6	S	0.48161	88.7	1473
Ag-109	Ag-110m	249.79	d	0.48161	4.7	72.3
				98.64% of Ag-110m deca	iys into Cd-110	

Target	Product	Product		Target Isotope	Thermal	Resonance
Isotope	lsotope	Half-life		Abundance	Cross-section (b)	Integral (b)
Cd 106	Cd 107	6 5	h	0.0125	1.0	6 1
Cd-108	Cd-107	462.6	h L	0.0125	0.72	12.1
Cd-110	Cd-111	stable	u	0.0005	11	12.1
Cd-110	Cd-111m	48 54	m	0.1249	0 14	3.0
Cu 110	cu IIIm	40.54		100% of Cd-111m decay	s into Cd-111	5.0
Cd-111	Cd-112	stable		0.128	6.9	45.9
Cd-112	Cd-113	stable		0.2413	2.2	13.1
Cd-112	Cd-113m	14.1	У	0.2413 99.86% of Cd-113m deca	0.012 avs into In-113m	
Cd-113	Cd-114	stable		0.1222	19852	384
Cd-114	Cd-115	53.46	h	0.2873	0.30	9.1
				100% of Cd-115 decays i	nto In-115m	
Cd-114	Cd-115m	44.6	d	0.2873	0.036	3.16
				100% of Cd-115m decay	s into In-115	
Cd-116	Cd-117	2.49	h	0.0749	0.075	1.65
				100% of Cd-117 decays i	nto In-117m	
				47.0% of In-117m decays	s into In-117	
Cd-116	Cd-117m	3.36	h	0.0749	0.025	0.422
				100% of Cd-117m decay	s into In-117m	
				47.0% of In-11/m decays	s into In-117	
In-113	In-114	71.9	s	0.0429	3.9	50
In-113	In-114m	49 51	h	0.0429	8 1	224
1115		45.51	u	95 75% of In-114m deca	avs into In-114	227
In-115	In-116	1/1 1	c	0 9571	40	662
In-115	In-116m	5/ 29	m	0.9571	162.3	2638
1111		54.25		100% of In-116m decays	into Sn-116	2030
				100% 01 11 11011 400843		
Sn-112	Sn-113	115.09	d	0.0097	0.71	26.2
				100% of Sn-113 decays in	nto In-113m	
Sn-112	Sn-113m	21.4	m	0.0097	0.3	
				8.9% of Sn-113m decays	into In-113m	
				91.0% of Sn-113m decay	ys into Sn-113	
				100% of Sn-113 decays i	nto In-113m	
Sn-114	Sn-115	stable		0.0066	0.064	3.4
Sn-115	Sn-116	stable		0.0034	43	15.8
Sn-116	Sn-117	stable		0.1454	0.129	11.3
Sn-116	Sn-117m	13.6	d	0.1454	0.006	0.49
				100% of Sn-117m decays	s into Sn-117	
Sn-117	Sn-118	stable		0.0768	1.07	17.9
Sn-118	Sn-119	stable		0.2422	0.22	1.8
Sn-118	Sn-119m	293.1	d	0.2422	0.01	2
				100% of Sn-119m decays	s into Sn-119	
Sn-119	Sn-120	stable		0.0859	2.19	4.56
Sn-120	Sn-121	44	v	0.3258	0.14	1.14
Sn-122	Sn-123	129.2	, d	0.0463	0.001	0.83
Sn-122	Sn-123m	40.06	m	0.0463	0.18	0.788
0.1 111	0.1 220			100% of Sn-123m decays	s into Sb-123	01700
Sn-124	Sn-125	9.64	d	0.0579	0.004	0.25
				100% of Sn-125 decays in	nto Sb-125	
				100% of Sb-125 decays i	nto Te-125m	
Sn-124	Sn-125m	9.52	m	0.0579	0.13	8
				100% of Sn-125m decays	s into Sb-125	
				100% of Sb-125 decays in	nto Te-125m	
		•		A		
Sb-121	Sb-122	2.72	d	0.5721	5.77	205
SD-121	SD-122M	4.19	m	0.5/21	U.Ub	13
a l a = =	a l			100% of Sb-122m decays	5 1110 50-122	
Sb-123	Sb-124	60.2	d	0.4279	4.1	129
Sb-123	Sb-124m	93	S	0.4279	0.037	0.93
				74.9% of Sb-124m decay	vs into Sb-124	

Target	Product	Product		Target Isotope	Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
Te-120	Te-121	16.78	d	0.0009	2.0	
Te-120	Te-121m	154	d	0.0009 0.34		
To-122	To-123	stable		0 255	3 INTO TE-121	80
Te-122	Te-125	110 7	Ь	0.255	5.4 1 1	
10 122	10 12511	115.7	u	100% of Te-123m decays	into Te-123	
Te-123	Te-124	stable		0.0089	430	5659
Te-124	Te-125	stable		0.0474	6.3	3.1
Te-124	Te-125m	57.4	d	0.0474	0.04	7
				100% of Te-125m decays	into Te-125	
Te-125	Te-126	stable		0.0707	1.29	21.9
Te-126	Te-127	9.35	h	0.1884	0.9	8
Te-126	1e-12/m	109	a	0.1884 97.6 % of Te-127m decay	Z.9 vs into Te-127	1.04
Te-128	Te-129	69.6	m	0 3174	0.2	1 58
Te-128	Te-129m	33.6	d	0.3174	0.015	0.077
				64.0% of Te-129m decay	vs into Te-129	
Te-130	Te-131	25.0	m	0.3408	0.27	0.446
				100% of Te-131 decays ir	nto I-131	
Te-130	Te-131m	30.0	h	0.3408	0.02	0.0485
				23.1% of Te-131m decay	vs into Te-131	
				1% of L121 docave into	/S INTO 1-131 Vo 121m	
				99% of I-131 decays into	Xe-13111	
				100% of Xe-131m decays	into Xe-131	
I-127	I-128	24.99	m	1.0000	6.15	162
Xe-124	Xe-125	16.9	h	0.0009	150	3600
Xe-126	Xe-127	36.4	d	0.0009	2.47	61
Xe-128	Xe-129	stable		0.0192	3.5	
Xe-128	Xe-129m	8.88	d	0.0192	0.48	12.5
				100% of Xe-129m decays	into Xe-129	
Xe-129	Xe-130	stable		0.2644	21	260
Xe-130	Xe-131	stable		0.0408	26	
Xe-130	Xe-131m	11.84	d	0.0408	0.45	16
				100% of Xe-131m decays	into Xe-131	
Xe-131	Xe-132	stable		0.2118	93	883
Xe-132	Xe-133	5.24	d	0.2689	0.45	4.6
Xe-132	Xe-133m	2.19	d	0.2689	0.05	0.9
				100% of Xe-133m decays	into Xe-133	
Xe-134	Xe-135	9.14	h	0.1044	0.265	0.57
Xe-134	Xe-135m	15.29	m	0.1044	0.003	0.101
				100% of Xe-135m decays	into Xe-135	
Xe-135	Xe-136				2650000	7600
Xe-136	Xe-137	3.82	m	0.0887	0.26	0.74
Cc 122	Cc 124	2.00		1 0000	27 C	106
Cc 122	$C_{2} = 124$	2.00	y r	1.0000	27.0 DE	400 วาว
C2-122	CS-154111	2.9	n	1.0000 af Cs_124m docours	2.3 into Cs-134	52.3
				100% Of C3-13411 decays	11110 C3-134	
Ba-130	Ba-131	11 5	Ь	0.00106	8.8	184
				100% of Ba-131 decays in	nto Cs-131	
				100% of Cs-131 decays in	nto Xe-131	
Ba-130	Ba-131m	14.6	m	0.00106	2.5	25
20 200	20 101	1.10		100% of Ba-131m decays	into Ba-131	_0
				100% of Ba-131 decays in	nto Cs-131	
				100% of Cs-131 decays in	nto Xe-131	
Ba-132	Ba-133	10 51	v	0.00101	77	44
Ba-132	Ba-133m	28 O	y h	0.00101	0.5	28
50 10L	50 10011	50.9		100% of Ba-133m decays	sinto Ba-133	2.0
Ba-134	Ba-135	stahla		0 02417	1 4	
Ba-134	Ba-135m	28.7	h	0.02417	0.158	23.9

Target	Product	Product	Target Isotope		Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
-	•			100% of Ba-135m decays into Ba-135		
Ba-135	Ba-136	stable		0.06592	5.8	99
Ba-136	Ba-137	stable		0.07854	0.57	1.0
Ba-136	Ba-137m	2.55	m	0.07854 0.01		0.75
				100% of Ba-137m decays	s into Ba-137	
Ba-137	Ba-138	stable		0.11232 3.6		4.0
Ba-138	Ba-139	83.06	m	0.7169	0.404	0.32
Ba-139	Ba-140	12.75	d		6.2	
				100% of Ba-140 decays in	nto La-140	
12-138	la-139	stable		0 0009	57.2	409
La-139	La-140	40.27	h	0.9991	9.21	12.1
		-			-	
Ce-136	Ce-137	9.0	h	0.00185	4.2	69
Ce-136	Ce-137m	34.4	h	0.00185	0.95	
				99.2% of Ce-137m decay	ys into Ce-137	
Ce-138	Ce-139	137.64	h	0.00251	1.03	10.6
Ce-140	Ce-141	32.5	d	0.88450	0.51	0.55
Ce-142	Ce-143	33.04	h	0.11114	0.96	1.15
Pr-141	Pr-142	19.12	h	1.0000	11.3	15.9
Nd-142	Nd-143	stable		0.272	18.7	5.9
Nd-143	Nd-144	stable		0.122	325	131
Nd-144	Nd-145	stable		0.238	3.6	4.3
Nd-145	Nd-146	stable		0.083	42.2	224
Nd-146	Nd-147	10.98	d	0.172	1.49	2.57
				100% of Nd-147 decays i	into Pm-147	
Nd-148	Nd-149	1.73	h	0.057	2.57	14.3
N. 1 4 5 0	N 1 4 5 4			100% of Nd-149 decays i	into Pm-149	45.0
Nd-150	Nd-151	12.44	m	0.056	1.04	15.2
				100% 01 Nu-151 decays 1	Into Pm-151	
	Dm 1/19	5 27	44		96	2064
PIII-147 Pm-147	Pm-1/8m	J.57 /11 2	d		72 /	7004
F 111- 14 7	FIII-140III	41.5	u	5% of Pm-148 decays int	to Sm-148	750
Sm-144	Sm-145	340	d	0.0307	1.64	2.38
Sm-147	Sm-148	stable		0.1499	57	779
Sm-148	Sm-149	stable		0.1124	2.4	27
Sm-149	Sm-150	stable		0.1382	40140	3422
Sm-150	Sm-151	90	У	0.0738	100	333
Sm-152	Sm-153	46.28	h	0.2675	206	2978
Sm-153	Sm-154				420	
Sm-154	Sm-155	22.3	m	0.2275	8.5	36
				100 % of Sm-155 decays	into Eu-155	
Eu-151	Eu-152	13 54	v	0.4781	5900	1510
Eu-151	Eu-152m	9.31	, h	0.4781	3300	1790
20 101	20 10211	5.51		28.4% of Fu-152m decay	vs into Sm-152	1750
				72.6% of Eu-152m decay	/s into Gd-152	
Eu-152	Eu-153				12800	2190
Eu-153	Eu-154	8.59	v	0.5219	312	1500
Eu-154	Eu-155	4.76	ý		1446	1320
Gd-152	Gd-153	240.4	Ь	0 0020	725	/122
Gd_152	Gd.157	240.4 ctable	u	0.0020	22460	423 200
Gd 154		stable		0.0219	2240U 0E	200
GU-154	Gd 156	stable		0.0218	60200	300
GU-122		stable		0.1480		102
GG-156	Ga-157	stable		0.2047	1.8	103
GG-15/	G0-158	stable		0.1565	254000	172
Gd-158	Gd-159	18.48	h	0.2484	2.2	73
Gd-160	Gd-161	3.66	m	0.2186	1.4	8.1
Th-159	Th-160	72 २	Ь	1 0000	23.8	430
Th-160	Th-161	۲ <u>2</u> .5 6 ۹1	h	1.0000	334	3050
100	10 101	0.51	u		554	3030

Target	Product	Product		Target Isotope	Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
Dy-156	Dy-157	8.14	h	0.0006	33	960
Dy-158	Dy-159	144.4	d	0.0010	43	120
Dy-159	Dy-160	stable			8000	
Dy-160	Dy-161	stable		0.0234	55	1122
Dy-161	Dy-162	stable		0.1891	600	1081
Dy-162	Dy-163	stable		0.2551	194	2350
Dy-163	Dy-164	stable		0.2490	134	1960
Dy-164	Dy-165	2.33	h	0.2818	2650	344
Dy-164	Dy-165m	1.26	m	0.2818	1610	424
D 465	D 466	04.6		97.7% of Dy-165m decay	/s Into Dy-165	22000
Dy-165	DY-166	81.6	n	 100% of Dy 166 doorys i	2000	22000
				100% OF Dy-100 decays h	110 00-100	
Ho-165	Ho-166	26.83	h	1.0000	61.2	660
Ho-165	Ho-166m	1200	v	1.0000	3.2	20
			,			
Er-162	Er-163	1.25	h	0.0014	19	480
Er-164	Er-165	10.36	h	0.0161	13	105
Er-166	Er-167	stable		0.3361	16.9	110
Er-167	Er-168	stable		0.2293	649	2985
Er-168	Er-169	9.4	d	0.2678	2.74	38.3
Er-170	Er-171	7.52	h	0.1493	8.15	44.5
				100% of Er-171 decays ir	nto Tm-171	
Er-171	Er-172	49.3	h		280	
				100% Er-172 decays into	Tm-172	
	T 470	120.6		1 0000	407	1620
Tm-169	Im-170	128.6	d	1.0000	107	1629
Im-170	IM-1/1	1.92	У	 100% of Tm 171 docover	92	491
Tm 171	Tm 172	62.6	h	100% OF TIT-1/1 decays	100	420
1m-1/1	TM-172	63.6	n		190	438
Yb-168	Yb-169	32.03	d	0.0013	3033	19684
Yb-169	Yb-170	stable			3600	2080
Yb-170	Yb-171	stable		0.0304	10.2	320
Yb-171	Yb-172	stable		0.1428	58.8	331
Yb-172	Yb-173	stable		0.2138	1.3	26.9
Yb-173	Yb-174	stable		0.1613	15.5	385
Yb-174	Yb-175	4.185	d	0.3183	63.2	27
Yb-176	Yb-177	1.91	h	0.1276	2.85	6.9
				100% of Yb-177 decays in	nto Lu-177	
Lu-1/5	Lu-176	stable		0.9741	7.1	620
Lu-1/5	Lu-176m	3.64	n	0.9741	16.2	550
		6 70		99.9% of Lu-176m decay		465
Lu-176	Lu-1//	6.73	d	0.0259	2057	465
Lu-1/6	Lu-1//m	160.4	d	0.0259	2.8	3.8
				22.0% of Lu-177m decay	'S INTO LU-177 vs into Hf-177m	
1 177	1., 170	20 E	m	78.0% Of Lu-17711 uecay	890	
Lu-177	Lu-170	20.5	m		2 2	
Lu-1//III	Lu-170III	23.1			5.2	
Hf-174	Hf-175	70	d	0.0016	549	339
Hf-176	Hf-177	stable		0.0526	23.5	715
Hf-176	Hf-177m2	51.4	m	0.0526	3.0	
				100% of Hf-177m2 decay	ys into Hf-177	
Hf-177	Hf-178	stable		0.1860	374	7200
Hf-177	Hf-178m1	4.0	s	0.1860	0.96	
				100% of Hf-178m1 decay	ys into Hf-178	
Hf-178	Hf-179	stable		0.2728	83.3	1886
Hf-178	Hf-179m	18.67	S	0.2728	53	
				100% of Hf-179m decays	s into Hf-179	

Target	Product	Product		Target Isotope	Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
Hf-179	Hf-180	stable		0.1362	41	533
Hf-179	Hf-180m	5.5	h	0.1362	0.445	6.9
				99.7% of Hf-180m decay	s into Hf-180	
				0.3% of Hf-180m decays	into Ta-180	
Hf-180	Hf-181	42.39	d	0.3508 13.04		32
Hf-181	Hf-182m	62	m		40	
				58% of Hf-182m decays i	nto Ta-182	
Та-180	Ta-181	stable		0.00012	563	1457
Ta-181	Ta-182	114.43	d	0.99988	20.4	655
Ta-181	Ta-182m	15.84	m	0.99988	0.011	0.415
				100% of Ta-182m decays	s into Ta-182	
Ta-182	Ta-183	5.1	d		8200	1036
W 190	W/ 101	101 0	Ч	0.0012	22.2	226
W-180	VV-101 \\\/ 192	121.2	u	0.0012	22.5	220 602
W-182 W-183	W-185	stable		0.2050	10.0	364
W-184	W-185	75 1	Ь	0 3064	1 73	14 7
W-184	W-185m	1.67	m	0.3064	0.002	
	10011	1.07		100% of W-185m decays	into W-185	
W-185	W-186	stable			3.0	183
W-186	W-187	23.72	h	0.2843	38.1	480
W-187	W-188	69.4	d		64	2760
	Do 196	00.64	h	0.274	112	1720
Re-185	Re-160 Ro 199	90.64	n h	0.374	112	204
Re-187	Re-188m	17.0	m	0.020	74.8	2 <i>3</i> 4 Q /
10-101	Ne-10011	18.0		100% of Re-188m decays	s into Re-188	5.4
Os-184	Os-185	93.6	d	0.0002	3000	601
Os-186	Os-187	stable		0.0159	80	247
Oc 189	Oc 199	stable		0.0196	320	4/3
Os-180	Os-190	stable		0.1524	25	736
Os-189	Os-190m	9.9	m	0.1615	0.00026	0.013
Os-190	Os-191	15.4	d	0.2626	1.8	7.9
Os-190	Os-191m	13.1	h	0.2626	9.2	22.1
				100% of Os-191m decays	s into Os-191	
Os-191m	Os-192	stable			400	
Os-192	Os-193	30.11	h	0.4078	3.2	7.45
05-193	US-194	6.0	У		38	
lr-191	lr-192	73.83	d	0.373	645	3550
lr-191	lr-192m	1.45	m	0.373	309	
L. 102	L. 102			100% of Ir-192m decays	into Ir-192	2500
lf-192 lr-193	lr-193 lr-194	10.28	h	0.627	1578	3580
lr-192	lr-193				1570	
	200			ļ		
Pt-190	Pt-191	2.8	d	0.00014	152	72
Pt-192	Pt-193	50	У	0.00782	8	135
Pt-192	Pt-193m	4.33	d	0.00782	2.2	
Pl-194 Dt-10/	Pt-195 Dt-195m		Ч	0.32967	1.44	4 2 1
Pt-195	Pt-196	stable	u	0.32907	30.6	376
Pt-196	Pt-197	19.89	h	0.25242	0.54	5.2
Pt-196	Pt-197m	95.4	m	0.25242	0.044	0.35
	-			97.0% of Pt-197m decays	s into Pt-197	
D: 400	DI 400			3.0% of Pt-197m decays	into Au-197m	
Pt-198	Pt-199	30.8	m	0.07163	3.26 hto Au-199	55
Pt-198	Pt-199m	13.6	ç	0 07162	0 25	6.0
190		15.0	5	100% of Pt-199m decavs	into Pt-199	0.0
				100% of Pt-199 decays in	nto Au-199	

Target	Product	Product	Target Isotope Th		Thermal	Resonance
Isotope	Isotope	Half-life		Abundance	Cross-section (b)	Integral (b)
Au-197	Au-198	2.7	d	1.000	98.65	1550
Au-198	Au-199	3.14	d		25100	
Hg-196	Hg-197	64.14	h	0.0015	3080	413
Hg-196	Hg-197m	23.8	h	0.0015	109	58.9
				93.2% of Hg-197m decay	vs into Hg-197	
				6.8% of Hg-197m decays	into Au-197m	
Hg-198	Hg-199	stable		0.0997	2.0	71
Hg-198	Hg-199m	42.6	m	0.0997	0.018	1.8
				100% of Hg-199m decays	s into Hg-199	
Hg-199	Hg-200	stable		0.1687	2150	441
Hg-200	Hg-201	stable		0.2310	15	2.1
Hg-201	Hg-202	stable		0.1318	4.9	31
Hg-202	Hg-203	46.61	d	0.2986	4.91	4.2
Hg-204	Hg-205	5.2	m	0.0687	0.43	0.85
TI-203	TI-204	3.78	у	0.29524	11.4	39.8
TI-204	TI-205	stable			21.6	82
TI-205	TI-206	4.19	m	0.70476	0.104	0.71
Pb-204	Pb-205	1.40E+07	у	0.014	0.703	2.38
Pb-206	Pb-207	stable		0.241	0.0279	0.11
Pb-207	Pb-208	stable		0.221	0.647	0.35
Pb-208	Pb-209	3.3	h	0.524	0.00023	0.068
Bi-209	Bi-210m	3.00E+06	у	1.000	0.0217	0.05
Bi-209	Bi-210	5.0	d	1.000	0.0179	0.19
				100% of Bi-210m decays	s into Bi-210	
Th-232	Th-233	22.3	m	1.000	7.35	83.3
				100% of Th-233 decays in	nto Pa-233	
U-234	U-235	7.00E+08	у	0.000055	102.5	659
U-234	fission products			0.000055	< 0.65	6.5
U-235	U-236	2.34E+07	у	0.007200	98.8	146
U-235	fission products			0.007200	582.6	275
U-238	U-239	23.45	m	0.992745	2.68	277
				100% of U-239 decays in	to Np-239	

Table 5. U-235 fission-neutron averaged cross sec	tions.
---	--------

Target	Product	Product		Isotope	Fast neutron averaged
Isotope	Isotope	Half-life		Abundance	Cross-section (mb)
(n n) reactions:					0.000 000000 (
Mg-24	Na-24	14 96	h	0 7899	1 53
Al-27	Mg-27	9.46	m	1.0000	4
Si-28	Al-28	2.24	m	0.9223	6.4
Si-29	Al-29	6.56	m	0.0468	3.3
P-31	Si-31	2.52	h	1.0000	36
S-32	P-32	14.26	d	0.9493	69
S-33	P-33	25.34	d	0.0076	76
Cl-35	S-35	87.5	d	0.7578	78
CI-37	S-37	5.05	m	0.2422	0.218
K-39	Ar-39	269	v	0.9326	20
			'		-
K-41	Ar-41	1.83	h	0.0673	2.1
Sc-45	Ca-45	163.8	d	1.0000	15
Ti-46	Sc-46	83.79	d	0.0825	12.5
Ti-47	Sc-47	3.35	d	0.0744	20
Ti-48	Sc-48	43.67	h	0.7372	0.315
V-51	Ti-51	5.76	m	0.9975	0.87
Cr-52	V-52	3.74	m	0.8379	1.09
Fe-54	Mn-54	312.3	d	0.0584	82.5
Fe-56	Mn-56	2.58	h	0.9175	1.07
Co-59	Fe-59	44 5	d	1 0000	1 42
00.00	10.35	11.5	ŭ	1.0000	2.12
Ni-58	Co-58	70.86	Ь	0.6807	113
Ni-60	Co-60	5 27	v	0.2622	23
Cu-65	Ni-65	2.52	y h	0.3083	0.48
Zn-64	NI-05 Cu-64	12.52	h	0.3085	21
Zn 66	Cu 66	12.7 5 10	m	0.2790	0.62
Zn-67	Cu-67	2.12	d	0.2750	1.07
211-07	Cu-07	2.50	u	0.0410	1.07
(n,α) reactions:					
Al-27	Na-24	14.96	h	1.0000	0.725
Si-30	Mg-27	9.46	m	0.0309	0.155
P-31	Al-28	2.24	m	1.0000	1.9
CI-35	P-32	14 3	d	0.7578	8.8
V-51	Sc-48	43.67	ĥ	0.9975	0.022
Mn-55	V-52	3 74	m	1 0000	0.11
Fe-54	Cr-51	27.7	h	0.0584	0.6
Co-59	Mn-56	2 58	ĥ	1 0000	0 156
Ni-62	Fe-59	44 5	h	0.0363	0.09
Cu-63	Co-60	5 27	v	0.6917	0.5
		0.27	,	0.001/	
(n,2n) reactions:					
F-19	F-18	109.8	m	1.0000	0.0073
Na-23	Na-22	2.6	v	1.0000	0.0022
Ca-48	Ca-47	4.54	d	0.0019	0.36
Ti-46	Ti-45	184.8	m	0.0825	0.0078
Cr-50	Cr-49	42.3	m	0.0435	0.006
Mn-55	Mn-54	312.3	d	1.0000	0.258
Co-59	Co-58	70.86	d	1.0000	0.4
Cu-63	Cu-62	9.74	m	0.6917	0.124
As-75	As-74	17 77	d	1 0000	0.33
Y-89	Y-88	106.65	ď	1.0000	0.156
Nh-93	Nh-92m	10.15	h	1 0000	0.48
Διι-197	Δυ-196	6.18	d	1 0000	2 97
		0.10	u	1.0000	2.37
(n,n') reactions:					
Se-77	Se-77m	17.45	s	0.0763	733
Sr-87	Sr-87m	2.81	h	0.0700	112
Y-89	Y-89m	16.06	s	1.0000	128
Rh-103	Rh-103m	56.1	m	1.0000	533
Cd-111	Cd-111m	48.6	m	0.1280	228
In-115	In-115m	4.49	h	0.9571	188
Ba-137	Ba-137m	2.55	m	0.1123	225
Au-197	Au-197m	7.73	S	1.0000	380

Table 6 Dro	portios of the radioactive	isotones arranged	hy atomic number
	perces or the radioactive	isotopes an angeu	by atomic number.

Isotope	Half	life	Energy (keV)		Abundance (%)	Production Mode(s)
H-3	12.3	у	no γs			H-2(n,γ); He-3(n,p); Li-6(n,α)
Be-7	53.12	d	477.60	*	10.52	accelerator produced
Be-10	1.51E+06	У	no γs			Be-9(n,γ)
C-14	5730	У	no γs			C-13(n,γ); N-14(n,p)
N-16	7.13	S	6128.63 7115.15	*	67.0 4.9	N-15(n,γ); O-16(n,p)
O-19	26.91	S	197.14 1356.84 1444.08	*	95.9 50.4 2.6	O-18(n,γ); F-19(n,p)
F-18	109.77	m	no γs Annhilat	ion	abundance = 93.4	F-19(n,2n)
F-20	11	S	1633.60	*	100	F-19(n,γ)
Ne-23	37.24	S	439.99 1635.96	*	32.9 0.99	Ne-22(n,γ)
Na-22	2.6	У	1274.53 Annhilatic	* on a	99.9 abundance = 179.8	accelerator produced
Na-24	14.96	h	1368.63 2754.03	*	100.0 99.9	Na-23(n,γ); Mg-24(n,p); Al-27(n,α)
Mg-27	9.46	m	170.68 843.76 1014.44	*	0.8 71.8 28.0	Mg-26(n,γ); Al-27(n,p); Si-30(n,α)
Al-28	2.24	m	1778.97	*	100	Al-27(n,γ); Si-28(n,p); P-31(n,α)
Al-29	6.56	m	1273.37 Annhilat	* ion	90.6 abundance = 200.	Si-29(n,p)
Si-31	2.62	h	1266.12	*	0.07	Si-30(n,γ); P-31(n,p)
P-32	14.26	d	no γs			P-31(n,γ); S-32(n,p)
P-33	25.34	d	no γs			P-31(2n,γ); S-33(n,p)
S-35	87.32	d	no γs			S-34(n,γ); Cl-35(n,p)
S-37	5.05	m	3103.36	*	94	S-36(n,γ); Cl-37(n,p)
Cl-36	3.01E+05	у	no γs			Cl-35(n,γ)
Cl-38	37.24	m	1642.71 2167.40	*	31.9 42.4	Cl-37(n,γ)
Ar-37	35.04	d	no γs			Ar-36(n,γ)
Ar-39	269	У	no γs			Ar-38(n,γ)
Ar-41	1.83	h	1293.59	*	99.1	Ar-40(n,γ)
K-40	1.28E+09	У	1460.83	*	10.67	natural product
K-42	12.36	h	312.60 1524.70	*	0.34 18	K-41(n,γ)
Ca-41	1.03E+05	У	no γs			Ca-40(n,γ)
Ca-45	163.61	d	no γs			Ca-44(n,γ); Sc-45(n,p)

Table 6.	Properties	of the rad	ioactive isot	opes arranged	d by atomi	c number.

Isotope	Half-	life	Energy (keV)		Abundance (%)	Production Mode(s)
Ca-47	4.54	d	489.23 807.86 1297.09	*	6.2 6.2 71	Ca-46(n,γ)
Ca-49	8.72	m	3084.40 4071.90	*	92 7	Ca-48(n,γ)
Sc-46	83.79	d	889.28 1120.54	*	99.98 99.99	Sc-45(n,γ); Ti-46(n,p)
Sc-46m	18.8	S	142.53	*	62	Sc-45(n,γ); Ti-46(n,p)
Sc-47	3.35	d	159.38	*	68.3	Ti-47(n,p);
Sc-48	43.67	h	175.36 983.52 1037.60 1212.88 1312.10	*	7.48 100 97.6 2.38 100	Ti-48(n,p)
Sc-49	57.2	m	1622.60 1761.90	*	0.01 0.05	Ti-49(n,p); parent = Ca-49 [8.72 m]
Ti-51	5.76	m	320.08 608.60 928.64	*	93.1 1.18 6.9	Ti-50(n,γ)
V-52	3.74	m	1434.07	*	100	V-51(n,γ)
Cr-51	27.7	d	320.08	*	10.08	Cr-50(n,γ); Fe(n,α)
Cr-55	3.5	m	1528.30	*	0.037	Cr-54(n,γ)
Mn-54	312.3	d	834.85	*	99.98	Fe-54(n,p)
Mn-56	2.58	h	846.77 1810.77 2113.12 2522.88 2657.46	*	98.87 27.19 14.34 0.99 0.65	Mn-55(n,γ); Fe-56(n,p); Co-59(n,α)
Fe-55	2.73	У	no γs			Fe-54(n,γ)
Fe-59	44.5	d	142.65 192.35 1099.25 1291.60	*	1.02 3.08 56.5 43.2	Fe-58(n,γ); Co-59(n,p)
Co-56	77.27	d	846.77 977.37 1037.84 1175.10 1238.28 1360.22 1771.35 2015.18 2034.76 2598.46 3009.60 3201.96 3253.42 3272.93	*	100 1.44 13.99 2.28 67.60 4.33 15.69 3.08 7.88 17.28 1.05 3.24 7.93 1.89	accelerator produced
Co-57	271.79	d	14.41 122.06 136.47	*	9.16 85.60 10.68	accelerator produced

т	able 6. Pro	perties of the	radioactive isoto	nes arranged b	v atomic number.
			autouctive isoto	pes an angea a	, aconne namoen

Isotone	Half	life	Energy (keV)		Abundance (%)	Production Mode(s)
					(,,,	
Co-58	70.86	d	810.78	*	99.45	Ni-58(n,p)
Co-60	5.27	У	1173.24	*	99.97	Co-59(n,γ); Cu-63(n,α); Ni-60(n,p)
			1332.50		99.98	
Co-60m	10.47	m	58.60	*	2.04	Co-59(n,γ)
			1332.50		0.24	
Ni-59	7.60E+04	У	no γs			Ni-58(n,γ)
Ni-63	100.1	у	no γs			Ni-62(n,γ)
Ni-65	2.52	h	366.27		4.81	Ni-64(n,γ)
			1115.55	*	15.43	
			1481.84		23.50	
Cu-62	9.74	m	875.70		0.15	Cu-63(n,2n)
			1172.90		0.34	
Cu-64	12.7	h 🗖	<u>1345.84</u>	* ion at	0.47	Cu-63(n,γ)
			Ammat			
Cu-66	5.12	m	833.54	*	0.22	Cu-65(n,γ)
			1039.23	•	9.00	
Cu-67	61.83	h	91.27		7.0	Cu-65(2n,γ); Zn-67(n,p)
			93.31 184 58	*	16.1 48 7	
			300.22		0.8	
Zn-65	244.26	d	1115.55	*	50.6	Zn-64(n,γ)
Zn-69	56.4	m	weak ys			Zn-68(n,γ)
Zn-69m	13.76	h	438.63	*	94.77	Zn-68(n,γ)
Zn-71	2.45	m	511.56	*	32.0	Zn-70(n,γ)
Zn-71m	3.96	h	386.28	*	93.0	Zn-70(n,γ)
			487.38		62.0	
			511.56		28.4	
			596.14 620.18		27.9 57.0	
			020.10		57.0	
Zn-72	46.5	h	16.40	*	8.29	Zn-71(2n,γ)
			145.05	-	9.37	
Ga-70	21.14	m	1039.20	*	0.65	Ga-69(n.v)
0.70			600 0 A			
Ga-72	14.1	n	600.94	*	5.54	Ga-71(n,y)
			834.01		95.63	
			894.26		9.88	
			1050.73		6.91	
			1861.09		5.25	
			2201.69		25.90	
			2490.98		7.68	
			2007.82		12.78	
Ge-71	11.43	d	no γs			Ge-70(n,γ)
Ge-75	82.78	m	264.66	*	11.3	Ge-74(n,y)
Ge-75m	47.7	S	139.68	*	39.0	Ge-74(n,γ)

Table 6. Properties of the radioactive is	topes arranged b	y atomic number.
---	------------------	------------------

			Energy		Abundance	
Isotope	Half-	life	(keV)		(%)	Production Mode(s)
60.77	11 0	h	211.02		20.9	C_{2} \overline{Z} $f(n, y)$
Ge-77	11.5		211.05		50.8 28.6	Ge-76(11,7)
			213.31	*	28.0 54.0	
			367.40		14.0	
			416.33		21.8	
			558.02		16.1	
			631.82		7.0	
			714.35		7.2	
			1085.19		6.1	
			1368.40		3.3	
Ge-77m	52.9	S	159.70		10.33	Ge-76(n,γ)
			215.51	*	21.40	
As-74	17.77	d	595.85	*	59.4	As-75(n.2n)
			634.78		15.4	() /
			Annhilat	ion a	abundance = 59.0	
Δs-76	26.3	h	559 10	*	44 60	$\Delta s - 75(n v)$
//3 / 0	20.5		563.18		1.20	
			657.04		6.17	
			1212.94		1.44	
			1216.10		3.42	
			1228.60		1.21	
As-77	38.83	h	239.00	*	1.6	As-75(2n,γ); parent = Ge-77 [11.3 h]
6 a 7 F	110 70	ام	06 70		2.42	
Se-75	119.78	a	90.73		3.42	Se-74(n,γ)
			121.12		17.20	
			109.61		56.50 1 / Q	
			264.66	*	58.90	
			204.00		24 99	
			303.92		1.32	
			400.66		11.47	
Se-77m	17 36	s	161 92	*	52.4	Se-76(n v)
	17.50	5	101.52		52.1	
Se-79m	3.92	m	95.73	*	9.62	Se-78(n,γ)
Se-81	18.5	m	275.99	*	0.70	Se-80(n,γ)
			290.10		0.55	
Se-81m	57 3	m	103 01	*	13.0	Se-80(n v)
00 02	0110				2010	
Se-83	22.3	m	224.80		32.64	Se-82(n,γ)
			356.70	*	69.90	
			510.17		42.64	
			718.10		14.96	
			799.07		14.82	
			836 52		13.28	
			050.52		13.20	
Se-83m	70.1	S	356.69		18.0	Se-82(n,γ)
			673.98	*	15.2	
Br-80	17 62	m	616 60	*	67	Br-79(n v)
51.00	17.00		510.00 510.00		0.7	2. / 5(1),4/
		Г	Annhila	tion	abundance = 5.0	
D., 00		. L				
BL-SOW	4.42	n	37.05	*	39.1	Br-79(n,γ)

Table 6. Properties of the radioactive i	sotopes arranged by atomic number.
--	------------------------------------

			Energy		Abundance	
Isotope	Half-	life	(keV)		(%)	Production Mode(s)
D.: 02	25.2		224.40		2.20	
Br-82	35.3	n	221.48		2.26	Br-81(n,γ)
			554.35		/0./6	
			606.34		1.20	
			619.11		43.44	
			698.37		28.49	
			776.52	*	83.54	
			827.83		24.03	
			1007.59		1.27	
			1044.08		27.23	
			1317.47		26.48	
			14/4.88		16.32	
Br-82m	6.13	m	776.52	*	0.24	Br-81(n,γ)
Kr-85m	4 48	h	151 16	*	75.0	Kr-84(n v): fission
Ki OSIII	4.40		304.87		14.0	
			504.07		14.0	
Kr-87	76.3	m	402.59	*	49.60	Kr-86(n.v): fission
	70.5		845.40		7 34	
			2554.80		9 20	
			2559.00		3 97	
			2550.10		5.52	
Kr-88	2.84	h	196.30	*	25.98	fission
			834.83		12.98	
			1529.77		10.93	
			2195.84		13.18	
			2391.11		34.60	
Rb-86	18.63	d	1076.64	*	8.78	Rb-85(n,γ)
Rb-86m	1.02	m	556.07	*	98.19	Rb-85(n,γ)
Rb-88	17.78	m	898.04 1836.06	*	14.04 21.40	Rb-87(n,γ); fission parent = Kr-88 [2.84 h]
Sr-85	64.84	d	514.01	*	99.27	Sr-84(n,γ)
Sr-85m	67.6	m	231.67	*	84.4	Sr-84(n,γ)
Sr-87m	2.8	h	388.53	*	81.9	Sr-86(n,γ)
Sr-89	50.53	d	908.96	*	0.01	Sr-88(n,γ); fission
Y-88	106.65	d	898.04		93.7	accelerator produced
			1836.06	*	99.2	
Y-90m	3.19	h	202.51	*	97.30	Y-89(n,γ)
			479.17		90.74	
Zr-95	64.02	d	/24.20		44.15	Zr-94(n,γ); fission
			756.73	*	54.50	
7: 07	10.01	L	255.40		2.00	$7\pi O((n, y))$ finction
21-97	16.91	n	355.40		2.09	2r-96(n,γ); fission
			507.64	*	5.03	
			/43.36		93.00	
			1147.97		2.61	
	40.45	ہے	00440	*	00.0	$N_{2}(n, 2n)$
	10.15	a	934.46	*	99.0	ND-93(N,2N)
ND-94M	6.26	m	871.10	*	0.5	ND-93(n,γ)
				*	<u> </u>	
ND-95	34.98	d	765.79	*	99.79	$2r-94(n,\gamma)$; fission
						parent = $2r-95$ [64.02 d]
	00.0	F	204.42		2.22	Tr 04(n w) fincing
ND-95III	80.0	n	204.12	*	2.33	$21-34(\Pi, \gamma)$; TISSION
			235.69		24.90	parent = 21-95 [04.02 0]

Table 6. Properties of the radioactive iso	otopes arranged by atomic number.
--	-----------------------------------

Isotope	Half-	life	Energy (keV)		Abundance (%)	Production Mode(s)
Nb-97	72.1	m	658.08	*	98.39	Zr-96(n,y); fission
						parent = Zr-97 [16.91 h]
Nb-97m	52.7	S	743.36	*	100	Zr-96(n,γ); fission parent = Zr-97 [16.91 h]
Mo-93m	6.85	h	263.06		56.7	Mo-93(n,γ)
			684.67 1477.13	*	99.7 99.1	
Mo-99	65.9	h	140.51		89.43	Mo-98(n,γ); fission
			181.06		5.99	
			366.42		1.19	
			739.58 777.92	*	12.13 4.26	
Mo-101	14 61	m	191 92		18 00	$M_0-100(n_0)$; fission
	14.01		505.92		11.62	
			590.10	*	20.30	
			695.56		6.66	
			934.21		4.12	
			1012.47		13.00	
			1160.98		4.02	
			1532.49		6.14	
			2032.10		6.59	
Tc-99m	6.01	h	140.51	*	89.0	Mo-98(n,γ); fission parent = Mo-99 [65.9 h]
Tc-101	14.22	m	306.86	*	89.00	Mo-100(n,γ); fission
			545.12		5.96	parent = Mo-101 [14.61 m]
Ru-97	69.1	h	215.72	*	86.00	Ru-96(n,γ)
			324.48		10.79	
Ru-103	39.26	d	443.80		3.27	Ru-102(n,γ); fission
			497.08	*	90.90	
			010.55		5.75	
Ru-105	4.44	h	262.83		6.57	Ru-104(n,γ); fission
			316.44		11.12	
			469.37		17.55	
			676.36 724.30	*	47.30	
Ph 102	207	А	160 50		2 42	Ph (102/n, 2n)
101 102	207	u	400.00	*	2.42 38 40	111 103(11,211)
			555.60		96.00	
			628.05		3.80	
			1103.16		2.42	
Rh-104	42.3	S	555.80	*	2.00	Rh-103(n,γ)
Rh-104m	4.34	m	51.42	*	48.20	Rh-103(n,γ)
			77.55		2.08	
			97.10		2.99	
	-		555.80		0.13	
Rh-105	35.4	h	306.25 319.14	*	5.10 19.00	Rh-104(n,γ); fission parent = Ru-105 [4.44 h]
Pd 102	16.00	Ч	20.70		0.07	
ru-103	10.99	u	39.76 357.47	*	0.07	ru-102(11,γ)
Pd-107m	21.3	S	214.90	*	69.0	Pd-106(n,γ)
Pd-109	10 7	h	00 N1	*	2 61	Pd-108(n y)
ru-103	13./	11	88.04	-	3.01	ru-100(11,γ)

Table 6 Properties of the radioactive isoto	nes arranged by	v atomic number
Table 0. Froperties of the radioactive isoto	pes all allgeu b	y aconne number.

Isotope	Half-	life	Energy (keV)		Abundance (%)		Production Mode(s)
D.1.100	4 7		100.00	*	. ,	D-1 (00/m)	
Pd-109m	4.7	m	188.99	Ŧ	55.9	Pd-108(n,γ)	
Pd-111	23.4	m	59.78		0.55	Pd-110(n,γ)	
			70.44		0.78		
			3/6./1	*	0.46		
			580.02	4	0.90		
			1289.26		0.57		
			1458.90		0.58		
Dd 111m	E E	h	70.44		2.14	Dd (110(ny))	
Pu-11111	5.5		70.44	*	2.14	Ρα-110(Π,γ)	
			391.28		1.53		
4 - 400	2.27		422.04		0.50		
Ag-108	2.37	m	433.94		0.50	Ag-107(n,γ)	
			632.98	*	1.76		
Ag-110	24.6	S	657.76	*	4.50	Ag-109(n,γ)	
Ag-110m	249.79	d	446.81		3.72	Ag-109(n,y)	
U			620.36		2.79	0 ()///	
			657.76	*	94.00		
			677.62		10.28		
			687.02		6.39		
			706.68		16.33		
			744.28		4.70		
			763.94		22.14		
			818.03		7.29		
			884.68		/2.20		
			937.49		34.13		
			1364.50		24.12		
			1475.75		12 95		
			1562.30		1.02		
Cd-107	6.5	h	93.12	*	4.80	Cd-106(n,y)	
Cd-109	462.6	d	88.04	*	3.61	Cd-108(n,γ)	
Cd 111m	40 54		150.92	*	20.1	(110(m,y))	
Cu-111III	40.54	111	245.40		94.0	Cu-110(11,y)	
Cd-113m	14.1	у	263.70	*	0.023	Cd-112(n,γ)	
Cd 115	F2 F	h	260.80		1.04	(d 114(m y))	
Cu-115	53.5	n	200.89		1.94	Cu-114(Π,γ)	
			492.30		43.90		
			527.90	*	27.45		
Cd-115m	11.6	Ч	181 17		0.29	$(d_{-114}(n_{V}))$	
cu iism	44.0	u	933.80	*	2.00		
			1290.58		0.89		
Cd-117	2.49	h	273.35	*	28.00	Cd-116(n,v)	
			344.46		17.90		
			434.19		9.80		
			1303.27 1576.62		18.40 11.19		
Cd-117m	2.26	h	561 10		1/1 70	$Cd_{-11}E(n,y)$	
	5.50		860 41		7,90	τη-ττο(Π,λ)	
			1029.06		11.70		
			1065.98	*	23.10		
			1234.59		11.00		
			1432.91		13.40		
			2096.40		7.44		
			2322.75		7.86		

Table 6. Properties of the radioactive iso	otopes arranged by atomic number.
--	-----------------------------------

Isotope	Half-	life	Energy (keV)		Abundance (%)	Production Mode(s)
In-113m	1.66	h	391.69		64.20	Cd-112(n,γ); parent = Cd-113m [14y]
In-114m	49.5	d	190.29	*	15.56	In-113(n,y)
			558.46		3.24	
			725.30		3.24	
In-115m	4.49	h	336.26	*	45.83	$\ln -115(n,n')$; Cd-114(n, γ)
In-116m	54 29	m	138 33		3 29	parent = C0-115 [53.5 fi] ln-115(n y)
	51125		416.86		27.70	
			818.72		11.50	
			1097.33	*	56.20	
			1293.55		84.40	
			1507.67		10.00	
			2112.31		15.50	
In-117	43.2	m	158.56		87.0	Cd-116(n,γ)
			553.00	*	100.0	parents = Cd-117 [2.47 h] & Cd-117m [3.36 h]
In-117m	116.2	m	158.56		16.0	Cd-116(n,y)
			315.30	*	19.0	parents = Cd-117 [2.47 h] & Cd-117m [3.36 h]
Sn-113	115.09	d	255.05		1.82	Sn-112(n,γ)
			391.69	*	64.00	
Sn-113m	21.4	m	77.38	*	0.50	Sn-112(n,γ)
Sn-117m	13.6	d	156.02		2.11	Sn-116(n,γ)
			158.56	*	86.40	
Sn-119m	293.1	d	23.87	*	16.1	Sn-118(n,γ)
			25.27		14.3	
Sn-123	129.2	d	1088.64	*	0.6	Sn-122(n,γ); fission
Sn-123m	40.08	m	160.33	*	86.0	Sn-122(n,γ); fission
Sn-125	9.64	d	332.10		1.41	Sn-124(n,y); fission
			469.85		1.48	
			822.48		4.28	
			915.55	*	4.13	
			1067.10	•	10.00	
			2002.15		1.92	
Sn-125m	9.52	m	332.10	*	97.2	Sn-124(n,γ); fission
Sb-122	2.72	d	564.12	*	71.0	Sb-121(n,γ)
Ch 100-			692.79	*	3.85	(h + 1)()
Sb-122m	4.19	m	61.41 76.06	Ŧ	55 18.5	Sb-121(n,y)
Sb-124	60.2	d	602.73		98.26	Sb-123(n.v)
	E	-	645.85		7.46	
			713.78		2.29	
			722.79		10.81	
			968.26 10/5 12		1.89	
			1325.51		1.04 1.59	
			1368.17		2.62	
			1690.98	*	47.79	
			2090.94		5.51	

Table 6. Properties of the radioactive iso	topes arranged by atomic number.
--	----------------------------------

			Energy		Abundance	
Isotope	Half-	life	(keV)		(%)	Production Mode(s)
Sb-124m	93	s	498.40		24.50	Sb-123(n.v)
55 IL III	55	5	602.73		25.00	30 123(1)()
			645.86	*	25.00	
Sh-125	2 76	V	176 31		6 82	$Sh_{123}(2n, y) \cdot Sn_{124}(n, y) \cdot fission$
50 125	2.70	у	380.45		1 52	narent = Sn-125 [9.64 d]
			427.88	*	30.00	
			463.36		10.49	
			600.60		17.86	
			606.72		5.03	
			635.95		11.31	
			671.44		1.80	
Te-121	16.78	d	507.59		17.7	Te-120(n,γ)
			573.14	*	80.3	
Te-121m	154	d	212.19	*	81.0	Te-120(n,γ)
			1102.15		2.54	
Te-123m	119.7	d	158.97	*	84.0	Te-122(n,γ)
Te-125m	57.4	d	35.49	*	6.67	Te-124(n,y)
	-		109.28		0.27	- ()))
Te-127	9.35	h	417.95	*	1.0	Te-126(n,γ)
Te-127m	109	d	57.61	*	0.5	Te-126(n,γ)
Te-129	69.6	m	27.81		16.30	Te-128(n,γ); fission
			459.60	*	7.70	
			487.39		1.42	
Te-129m	33.6	d	105.50		0.15	Te-128(n,γ); fission
			695.88	*	3.07	
Te-131	25	m	149.72	*	68.90	Te-130(n,γ); fission
			452.33		18.18	parent = Te-131m [30.0 h]
Te-131m	30	h	102.06		10.37	Te-130(n,γ); fission
			200.63		9.86	
			240.93		9.91	
			334.27		12.49	
			773.67	*	49.90	
			782.49		10.16	
			793.75		18.10	
			822.78		7.99	
			852.21		27.00	
			1206.60		12.74	
Te-132	3.2	d	49 72		15	fission
	0.1	ŭ	228.16	*	88	
I-125	59.4	d	35.49	*	6.68	Xe-124(n,y)
						parent = Xe-125 [16.9 h]
1 1 2 9	24.00	m	442.00	*	17	1 127/2 11
1-120	24.99	111	442.90 526.56		1/ 1.58	1-12/(11,γ)
			520.50		1.00	
I-131	8.02	d	80.18		2.62	Xe-130(n, γ); fission
			284.30		6.14	parents = Te-131 [25.0 m]
			364.49	*	81.70	& Te-131m [30.0 h]
			636.99		7.17	
			722.91		1.77	

Table 6 Properties of t	ha radioactive isot	ones arranged h	v atomic number
rable of Froperties of th	ie rauloactive isoto	opes all allgeu b	y aconne number.

			Energy		Abundance	
Isotope	Half	-life	(keV)		(%)	Production Mode(s)
1 4 2 2	2.2	Ŀ	505 70		4.04	finite execut. To 100 [0.0 d]
1-132	2.3	n	505.79		4.94	fission parent = 1e-132 [3.2 d]
			522.65		16.00	
			630.19		13.30	
			667.72	*	99.00	
			669.80		4.60	
			671.40		3.50	
			772.60		75.60	
			812.00		5 50	
			012.00		17.60	
			954.00		17.60	
			1136.00		3.01	
I-132m	83.2	m	98.00		3.72	fission parent = Te-132 [3.2 d]
. 202	0012		173 70	*	8 80	
			1,0.70		0.00	
I-133	20.8	h	529.87	*	87.00	fission
			875.33		4.51	
I-134	52.5	m	595.36		11.1	fission
			621.70		10.6	
			847.02	*	95.4	
			884.09		64.9	
			1072 55		14 9	
			1072.55		14.5	
I-135	6.57	h	526.56		13.3	fission
. 100	0.07	••	546 56		7.2	
			926.90		7.Z	
			836.80		6.7	
			1038.76		8.0	
			1131.51		22.7	
			1260.41	*	28.9	
			1457.56		8.7	
Xe-125	16.9	h	58.97		6.8	Xe-124(n,γ)
			188.40	*	54.0	
			243.38		30.1	
			453.80		4.7	
Xe-127	36.4	d	172.13		25.5	Xe-126(n,γ)
			202.86	*	68.0	
Xe-129m	8.88	d	39.58	*	7.5	Xe-128(n,γ)
			196.56		4.6	
X = 121	11.04		162.02	*	1.0	(-120/2) $(-120/2)$ $(-120/2)$ $(-120/2)$
Xe-131m	11.84	a	163.93	4	1.9	$Xe-13U(n,\gamma)$; $1e-13U(n,\gamma)$; fission
						parents = $1e-131m[30.0h]$
						& Te-131 [25.0 m]
						parent = I-131 [8.02 d]
Xe-133	5.24	d	81.00	*	38.0	Xe-132(n, γ); fission
Xe-133m	2.19	d	233.22	*	10.0	Xe-132(n,γ); fission
Vo 125	0.14	h	240 77	*	00.2	Yo 124/n wy firston
Xe-133	9.14	11	249.77		90.2	λθ-134(Π,γ), Π\$5ΙΟΠ
Xe-135m	15.29	m	526.56	*	80.5	Xe-134(n,y); fission
	20120		020.00		0010	parent = I-135 [6.57 h]
						. L J
Xe-137	3.82	m	455.49	*	31.0	Xe-136(n,γ); fission
¥- 420			070 1	*	04 50	final and
хе-138	14.1	m	258.41	-1-	31.50	TISSION
			434.56		20.32	
			1768.26		16.73	
			2015.82		12.25	
Fable 6. Properties of the	radioactive isoto	pes arranged by	atomic number.			
-----------------------------------	-------------------	-----------------	----------------			
-----------------------------------	-------------------	-----------------	----------------			

			Energy		Abundance	
Isotope	Half	-life	(keV)		(%)	Production Mode(s)
Cc-13/	2.06	V	175 36		1 /0	$(c_{-}133(n_{V}))$
C3-134	2.00	У	563.25		2 25	C3-133(11, ¥)
			560 33		15 28	
			604 72		97.62	
			795.86	*	85 53	
			801.95		8 69	
			1167 97		1 79	
			1365.18		3.01	
Cs-134m	2.9	h	127.50	*	13.0	Cs-133(n,γ)
0 405			706.04	*	100.0	
Cs-135m	53	m	786.84	ጥ	100.0	
			846.10		95.9	
Cs-137	30.07	V	661 66	*	85.1	$X_{e-136}(n, y)$; fission
C3-137	50.07	У	001.00		05.1	χε-130(1,γ), 1331011
Cs-138	33.4	m	462 80		30.7	fission
05 100	55.1		547.00		10.8	narent = Xe-138 [14 1 m]
			1009.78		29.8	
			1435.80	*	76.3	
			2218.00		15.2	
Ba-131	11 5	Ч	173.80		28 07	Ba-130(n v)
Dd-131	11.5	u	123.60		20.97	Βα-130(Π,γ)
			216.02		2.12	
			210.08		2 /1	
			239.03		2.41	
			243.45		14 04	
			404.05		1 31	
			486 52		2 09	
			496 33	*	47.00	
			150.55		17.00	
Ba-131m	14.6	m	108.08	*	55.00	Ba-130(n,γ)
Ba-133	10 51	V	53 16		2 20	Ba-132(n v)
Da 100	10.51	y	79.61		2.20	bu 192(1),y)
			81.00		34.06	
			276.40		7 16	
			302.85		18.33	
			356.02	*	62.05	
			383.85		8.94	
Ba-133m	38.9	h	275.92	*	17.50	Ba-132(n,γ)
Ba-135m	28.7	h	268.22	*	15.60	Ba-134(n,γ)
D 407			664.66	*	00.44	
Ba-13/m	2.55	m	661.66	*	90.11	Ba-136(n,y); fission
Po 120	82 OC	-	16E 0E	*	22.70	Ba 129(nul) fission
Dd-139	85.00	111	105.65		25.70	Ba-130(11,7), 11551011
Ba-140	12 75	Ь	162.66		6 22	fission
54 110	12.75	u	304.85		4.29	
			423.72		3.15	
			437.58		1.93	
			537.31	*	24.39	
La-140	40.27	h	328.76		20.30	La-139(n,γ); fission
			432.49		2.90	parent = Ba-140 [12.75 d]
			487.02		45.50	
			751.64		4.33	
			815.77		23.28	
			867.85		5.50	
			919.55		2.66	
			925.19		6.90	
			1596.21	*	95.40	
			2521.40		3.46	

Table 6 Dreparties of the redicastive isotopes	arranged h	· atomia number
Table 6. Properties of the radioactive isotopes	arranged by	atomic number.

Isotope	Half-	life	Energy (keV)		Abundance (%)	Production Mode(s)
Ce-137	9	h	436.59 447.15	*	0.27 1.80	Ce-136(n,γ)
Ce-137m	34.4	h	254.29	*	11.00	Ce-136(n,y)
Ce-139	137.64	d	165.86	*	80.00	Ce-138(n,γ)
Ce-139m	54.8	S	754.24	*	92.45	Ce-138(n,y)
Ce-141	32.5	d	145.44	*	48.20	Ce-140(n,y); fission
Ce-143	33.0	h	57.36 231.55 293.27 350.62 490.37 664.57 721.93 880.46	*	11.70 2.05 42.80 3.23 2.16 5.69 5.39 1.03	Ce-142(n,γ); fission
Ce-144	284.9	d	133.52	*	11.09	fission
Pr-142	19.12	h	1575.85	*	3.70	Pr-141(n,γ); fission
Nd-147	10.98	d	91.10 319.41 398.16 439.90 531.01 685.90	*	28.00 1.95 0.87 1.20 13.10 0.81	Nd-146(n,γ); fission
Nd-149	1.73	h	$\begin{array}{c} 114.31\\ 155.87\\ 211.31\\ 240.22\\ 267.69\\ 270.17\\ 326.55\\ 423.55\\ 540.51\\ 654.83\end{array}$	*	$ 19.20 \\ 5.93 \\ 25.90 \\ 3.94 \\ 6.03 \\ 10.72 \\ 4.56 \\ 7.40 \\ 6.58 \\ 8.00 $	Nd-148(n,γ); fission
Nd-151	12.4	m	116.80 138.89 175.07 255.68 423.56 736.23 797.53 1122.63 1180.89	*	39.00 7.05 6.33 14.80 5.92 5.92 4.72 4.08 13.30	Nd-151(n,γ); fission
Pm-148	5.37	d	550.28 914.85 1465.12	*	22.00 11.46 22.00	fission
Pm-148m	41.29	d	288.51 311.57 414.03 432.74 501.31 550.28 599.81 611.29 629.99 725.67 915.33 1013.81	*	$12.51 \\ 3.90 \\ 18.59 \\ 5.33 \\ 6.72 \\ 94.50 \\ 12.49 \\ 5.46 \\ 89.00 \\ 32.70 \\ 17.10 \\ 20.20 \\ $	fission

Table 6 Properties of the radioactive isotopes arranged by atomic number
Table 6. Froperties of the fauloactive isotopes affailiged by atomic number.

350.00 100.00	Isotono	Half	lifo	Energy		Abundance (%)	Production Mode(c)
Pm-149 53.1 h 25.5 * 3.1 Pd-148(ny); fission parent = Nd-151 [12.4 m] parent = Nd-151 [12.4 m] Pm-151 28.4 h 100.02 104.84 3.51 177.6 3.82 140.09 3.82 140.09 3.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 18.82 140.09 140.09 140.09 18.82 140.09 140.0	Isotope	Tidii-	ine	(KeV)		(76)	Production Mode(s)
Pm-151 28.4 h 100.02 100.54 100.54 100.05 100	Pm-149	53.1	h	285.95	*	3.1	Nd-148(n,γ); fission parent = Nd-149 [1.73 h]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pm-151	28.4	h	100.02		2.54	Nd-150(n,y); fission
167.758.30240.093.82240.093.82240.093.82340.823.00340.823.00340.823.00340.823.00340.869.675m-13346.28103.1830.005m-1522.2311522.2311522.1311522.13115211431112 <td></td> <td></td> <td></td> <td>104.84</td> <td></td> <td>3.51</td> <td>parent = Nd-151 [12.4 m]</td>				104.84		3.51	parent = Nd-151 [12.4 m]
177.16 3.82 240.09 3.82 240.09 3.82 275.21 6.80 340.08 2.10 445.68 4.05 Sm-145 30 6.25 12.0 Sm-144(n,y) Sm-153 46.28 6.96.7 4.85 Sm-152(n,y); fission Sm-155 22.3 m 104.33 * 74.60 Sm-154(n,y); fission Sm-152 22.3 m 104.33 * 74.60 Sm-154(n,y); fission Sm-152 22.3 m 104.33 * 74.60 Sm-154(n,y); fission Sm-152 13.54 y 12.178 28.58 Eu-151(n,y) Sm 155 22.3 m 104.33 * 7.58 44.12 2.13 44.4889 2.65 * 1.62 122.95 13.54 y 12.178 2.858 Eu-151(n,y) 122.95 144.89 1.42 2.65 1.62 1.62 122.95 1.42 2.30 Eu-151(n,y) 2.30 1.62				167.75		8.30	
240.09 3.82 340.08 23.00 340.08 23.00 344.90 445.68 340.08 4.00 Sm-145 340 61.25 4.05 Sm-153 46.28 63.67 4.85 Sm-152(n,y); fission Sm-155 22.3 m 103.18 30.00 Sm-152(n,y); fission Sm-155 22.3 m 104.33 74.60 Sm-154(n,y); fission Eu-152 13.54 y 12.178 78.58 Eu-151(n,y) Eu-152 13.54 y 12.178 78.58 Eu-151(n,y) Sm-154 y 12.178 78.58 Eu-151(n,y) Sm-152 3.31 77.899 3.34 778.99 12.94 76.58 Eu-151(n,y) Sm-152 9.31 h 12.178 7.40 Sm-152 9.32 1.42 2.30 1.42 121.195 1.42 2.30 1.42 2.30 Eu-152 9.31 h 12.178 7.00 Eu-151(n,y) Sm-				177.16		3.82	
27521 6.80 344.90 34008 2.11 445.68 4.00 Sm-145 340 61.25 12.0 Sm-144(n,v) Sm-153 46.28 h 69.67 4.85 30.00 Sm-152(n,v); fission Sm-155 22.3 m 104.33 * 74.60 30.00 Sm-154(n,v); fission Sm-155 22.3 m 104.33 * 74.60 30.00 Sm-154(n,v); fission Eu-152 13.54 y 12.178 244.70 28.58 7.58 441.12 Eu-151(n,v) Eu-152 13.54 y 12.178 244.70 28.58 7.58 441.57 Eu-151(n,v) Eu-152 13.54 y 12.178 244.70 28.58 7.58 441.51 Eu-151(n,v) Eu-152 9.31 h 12.178 244.79 2.65 7.576 4.62 4.99 696.39 Eu-153(n,v) Eu-154 8.59 y 12.178 247.92 2.98 695.39 Eu-153(n,v) Eu-154 8.59 y 12.178 247.92 2.98 696.24 1.80 1.004.72 Eu-153(n,v) Eu-155 4.76 y 12.307 696.24 1.80 1.004 1.33 6.060 Eu-153(n,v) Eu-155 </td <td></td> <td></td> <td></td> <td>240.09</td> <td></td> <td>3.82</td> <td></td>				240.09		3.82	
340.08 * 23.00 445.58 344.90 21.11 40.05 Sm-145 340 61.25 12.0 Sm-144(n,y)Sm-153 46.28 69.67 4.85 103.18 Sm-152(n,y); fissionSm-155 22.3 104.33 * 141.44 245.77 74.60 3.70 Sm-154(n,y); fissionEu-152 13.54 y 21.78 24.78 442.82 442.83 442.83 442.83 426.577 Eu-151(n,y)Eu-152 13.54 y 21.78 112.78 102.54 Eu-151(n,y)Eu-152 9.31 h 21.77 102.54 100.64 2.858 1.62 $1.02.44$ Eu-152 9.31 h 21.78 102.54 Eu-151(n,y)Eu-152 9.31 h 21.78 102.64 Eu-151(n,y)Eu-152 9.31 h 21.78 102.64 Eu-151(n,y)Eu-152 9.31 h 21.78 102.64 Eu-151(n,y)Eu-154 8.59 y 22.07 259.76 106.339 Eu-153(n,y)Eu-154 8.59 y 22.07 259.76 100.472 4.530 100.472 1.33 10.661 100.472 Eu-155 4.76 y 45.30 60.01 103.30 1.33 21.20 Eu-153(n,y)Eu-155 4.76 y 45.30 60.01 100.320 1.33 21.20 Eu-153(n,y)Gd-152 4.76 y 45.30 60.01 103.30 1.33 21.20 Eu-153(n,y)Gd-153 240.4 $49.69.67$ 97.43 2.42				275.21		6.80	
344300 21172211 44568Sm-145340d61.2512.0Sm-144(n,y)Sm-15346.28h66.67 $*$ 4.85 30.0Sm-152(n,y); fissionSm-15322.3m104.33 $*$ 74.60 141.44Sm-154(n,y); fissionEu-15213.54y212.78 244.70 344.287.88 344.28 244.70 344.28Eu-151(n,y)Eu-15213.54y244.70 244.70 344.28 344.28 344.112 2.234 344.28 2.234 3.14 112.07 13.64 21.00Eu-151(n,y)Eu-1529.31h121.78 344.28 293.12 108.877 10.21 112.095 112.295 1.42 21.00Eu-151(n,y)Eu-1529.31h121.78 293.12 108.242 293.12 108.242 203.21 112.00Eu-151(n,y)Eu-1548.59y212.07 293.12 203.22 203.22 203.22 203.22 203.22 203.22 203.22Eu-153(n,y)Eu-1544.76y45.30 200.22 203.22 203.22 203.22 203.22Eu-153(n,y)Eu-1554.76y45.30 20.22 203.22 203.221.33 20.22 203.22Eu-1552.476y45.30 20.221.33 20.22 20.22Eu-1552.476y45.30 20.301.33 20.31Eu-153240.4d66.77 27.43 20.222.42 20.22Gd-153240.4d66.77 27.432.42 2.20Eu-153240.4d66.77 27.432.42 2.20Eu-153240.4d </td <td></td> <td></td> <td></td> <td>340.08</td> <td>*</td> <td>23.00</td> <td></td>				340.08	*	23.00	
44.00 717.72 4.00 4.00 Sm-145 340 d 61.25 12.0 Sm-144(n,v) Sm-153 46.28 h 69.67 * 4.85 30.00 Sm-152(n,v); fission Sm-155 2.3 m 103.18 * 28.58 44.14 4 Sm-152(n,v); fission Eu-152 13.54 y 121.78 245.77 * 28.58 26 441.12 2.23 442.8 26.50 441.12 2.23 444.8 26.57 8 7.102.1 112.07 7.58 36.4 22.3 443.8 9 3.14 7.58 9 7.102.1 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 36.7 10.21 112.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.58 7.102 1.11 12.07 7.13 64 7.28 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.00 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23				344.90		2.11	
Sm-145 340 61.25 12.0 Sm-144(n,y) Sm-153 46.8 103.18 30.00 Sm-152(n,y); fission Sm-155 2.3 m 104.33 74.60 Sm-154(n,y); fission Sm-155 2.3 m 104.33 74.60 Sm-154(n,y); fission Eu-152 13.54 y 121.78 28.58 Eu-151(n,y) Sm-154 y 121.78 28.58 Eu-151(n,y) Eu-152 3.54 y 121.78 26.58 Sm-164 y 121.97 24.43 26.59 Eu-152 3.54 y 121.78 26.59 Eu-151(n,y) Sm-144 121.99 1.42 21.00 Eu-151(n,y) Eu-152 9.31 h 122.97 40.79 Eu-151(n,y) Sm-144 1.38 1.40 1.99 1.27 1.40 Sm-144 1.29 1.30 Eu-151(n,y) 1.29 Eu-152 1.29 1.23 1.23				445.68 717.72		4.00	
Sm-153 46.28 h 69.67 * 485 Sm-152(n,y); fission Sm-155 22.3 m 104.33 * 74.60 Sm-154(n,y); fission Eu-152 13.54 y 121.78 28.58 Eu-151(n,y) Eu-152 13.54 y 121.78 2.23 14.61 1055.87 12.24 867.38 4.24 162 12.94 1212.95 14.22 162 12.94 162 12.94 Eu-152 8 121.78 7.00 Eu-151(n,y) Eu-151(n,y) Eu-154 8.59 y 121.78 2.38 14.20 14.20 121.95 121.78 2.24 16.79 14.20 14.20 16.79 Eu-154	Sm-145	340	d	61.25	*	12.0	Sm-144(n,γ)
Sm-153 46.28 n 09.67 4.85 Sm-152(n,y); fission Sm-155 22.3 n 104.33 * 74.60 Sm-154(n,y); fission Eu-152 13.54 y 244.70 7.58 Sm-154(n,y); fission Eu-152 13.54 y 244.70 7.58 Lu-151(n,y) Eu-152 9.31 h 121.78 2.00 Eu-151(n,y) Eu-152 9.31 h 121.78 2.38 Lu-151(n,y) Eu-152 9.31 h 121.78 2.38 Lu-151(n,y) Eu-152 8.59 y 124.79 6.95 Eu-153(n,y) Eu-154 8.59 y 123.07 40.79 Eu-153(n,y) Eu-153 127.72 6.95							
Sm.155 22.3 m 143.43 * 74.60 1.98 245.77 Sm-154(n,y); fission Eu-152 13.54 y 121.78 344.28 344.28 344.28 344.28 344.28 344.28 344.28 344.28 365.09 12.94 366.08 14.61 1212.07 1112.07 1122.07 1122.07 1122.07 1122.07 1122.07 129914 28.58 14.24 7.65 12.94 1.62 12.9914 Eu-151(n,y) Eu-152m 9.31 h 344.28 344.28 365.38 12.9914 7.00 1.62 1.00 Eu-151(n,y) Eu-152m 9.31 h 344.28 344.28 3841.57 7.00 1.62 1.000 Eu-151(n,y) Eu-152m 9.31 h 344.28 344.28 363.39 7.00 1.62 1.000 Eu-153(n,y) Eu-154 8.59 y 343.00 273.30 20.22 73.30 273.30 20.22 73.30 72.27 88.01 1.00 72.27 88.01 1.00 72.27 73.30	Sm-153	46.28	h	69.67	*	4.85	Sm-152(n,y); fission
Sm-155 22.3 m 104.33 * 74.60 1.9.424.77 Sm-154(n,y); fission Eu-152 13.54 y 121.78 244.70 141.12 28.58 26.50 411.12 Eu-151(n,y) Eu-152 13.54 y 121.78 244.70 141.12 2.23 244.70 244.70 141.12 Eu-151(n,y) Eu-152 9.31 h 121.78 1422 7.00 141.12 Eu-151(n,y) Eu-152 9.31 h 121.78 244.99 7.00 144.21 Eu-151(n,y) Eu-154 8.59 y 123.07 247.92 40.79 6.95 Eu-153(n,y) Eu-154 8.59 y 123.07 275.67.6 40.99 692.42 1.80 273.30 Eu-153(n,y) Eu-155 4.76 y 45.30 20.22 1.38 20.02 Eu-153(n,y) Eu-155 4.76 y 45.30 20.22 1.38 20.02 Eu-153(n,y) Gd-153 240.4 d 69.67 69.67 2.100 21.20 Eu-153(2n,y)				103.18		30.00	
$ \begin{bmatrix} 141.44 & 1.98 \\ 245.77 & 3.70 \\ 3.70 \\ 5.87 \\ 5.97 \\ 5.87 \\ 5.87 \\ 5.97 \\ 5.87 \\ 5.97 \\ 5.87 \\ 5.97 \\ 5.87 \\ 5.97 \\ $	Sm-155	22.3	m	104.33	*	74.60	Sm-154(n,γ); fission
Eu-15213.54y121.78 244.70 344.28 441.12 964.08 1085.87 11207 11207 11207 144.88 964.08 1461 1121.27 11207 11207 120914 1408.00Eu-151(n,y)Eu-152m9.31h121.78 964.08 1408.00 121.295 1422 121.295 1422 121.007.00 1.62 21.00Eu-151(n,y)Eu-152m9.31h121.78 144.28 963.397.00 1.62 21.00Eu-151(n,y)Eu-152m9.31h121.78 144.28 963.397.00 11.67Eu-151(n,y)Eu-1548.59y123.07 247.92 963.26 1004.72 1274.4440.79 1.62 2.022 				141.44		1.98	
Eu-152 13.54 Y 121.78 244.70 441.12 244.70 411.12 223 443.89 3.14 778.90 411.12 223 443.89 3.14 778.90 42.194 867.38 4.24 1.800 1.021 1.227 1.422 1.299.14 1.62 2.100 Eu-151(n,y) Eu-152m 9.31 h 121.78 841.57 1.085.87 1.1207 1.1207 1.1207 1.1207 1.129.14 1.62 2.100 Eu-151(n,y) Eu-152m 9.31 h 121.78 841.57 1.000 7.58 1.42 2.100 Eu-151(n,y) Eu-154 8.59 Y 123.07 841.57 1.107 60.75 1.167 Eu-153(n,y) Eu-154 8.59 Y 123.07 85.91.76 1.127.44 60.75 1.167 Eu-153(n,y) Eu-155 4.76 y 45.30 85.54 1.05.30 1.33 2.02 Eu-153(2n,y) Eu-155 4.76 y 45.30 85.54 1.05.30 1.33 2.11 Eu-153(2n,y) Gd-152 240.4 d 67.73 7.73 2.240 2.111 Gd-152(n,y)				245.77		3.70	
Eu-152 4.76 y 4.30 7.58 1.11 Eu-155 4.76 y 4.30 3.14 F 2.44.70 7.58 1.21 A41.11.2 2.23 3.14 778.80 1.294 A41.389 3.14 778.80 1.294 3.64 10085.87 10.21 1112.07 13.64 1.212.95 1.42 1212.95 1.42 1.62 1.408.00 2.1.00 Eu-151(n,y) Eu-152m 9.31 h 121.78 7.38 Eu-151(n,y) Eu-154 8.59 y 123.07 40.79 Eu-153(n,y) 1004.72 18.01 1.27 13.01 Eu-153(n,y) 1004.72 18.01 1.27 1.00 <td< td=""><td>Eu-152</td><td>13.54</td><td>v</td><td>121.78</td><td></td><td>28.58</td><td>Eu-151(n,v)</td></td<>	Eu-152	13.54	v	121.78		28.58	Eu-151(n,v)
			,	244.70		7.58	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				344.28		26.50	
				411.12		2.23	
$ \begin{bmatrix} 778.90 & 12.94 \\ 867.38 & 4.24 \\ 964.08 & 14.61 \\ 1085.87 & 10.21 \\ 1122.95 & 1.42 \\ 1229.14 & 1.62 \\ 1229.14 & 1.62 \\ 1200 \end{bmatrix} $				443.89		3.14	
$ \begin{bmatrix} 867,38 & 4,24 \\ 1085,87 & 10,21 \\ 1112,07 & 13,64 \\ 1229,9,14 & 1,62 \\ 1299,14 & 1,62 \\ 1408,00 & * & 21,00 \end{bmatrix} $				778.90		12.94	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				867.38		4.24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				964.08		14.01	
Eu-152m9.31 h1212.95 142 1299.14 344.28 963.397.00 11.67Eu-151(n,y)Eu-1548.59 y123.07 247.92 591.76 996.26 1004.72 123.07 1.6740.79 6.95 6.95 6.95 1.67Eu-153(n,y)Eu-1548.59 y123.07 247.92 591.76 1.6740.79 4.99 6.95 1.67Eu-153(n,y)Eu-1548.59 y123.07 247.92 591.76 1.6740.79 4.99 6.95 591.76 1.67Eu-153(n,y)Eu-1548.59 y123.07 247.92 1.6740.79 4.99 1.27Eu-153(n,y)Eu-1554.76 y45.30 1.07 1.274.44 1.2121.33 2.120Eu-153(2n,y)Eu-153240.4 d69.67 97.43 1.31.82.42 2.900 2.1.11Gd-152(n,y)				1065.87		10.21	
1299.14 1.62 1249.14 1.62 1408.00 * 21.00 $Eu-152m$ 9.31 h 121.78 344.28 841.57 * 14.20 963.39 11.67 $Eu-154$ 8.59 y 21.76 4.99 591.76 4.99 591.76 4.99 592.42 1.80 725.30 20.22 755.76 10.60 1004.72 1.80 1274.44 * 8.59 y 69.56 10.60 1004.72 1.13 8.54 8.59 8.59 y 8.59 y 8.59 9.226 1004.72 1.801 1274.44 8.519 12.27 996.26 10.60 1004.72 1.13 8.54 30.80 20.22 30.80 20.22 30.80 20.22 30.80 1274.44 8.54 30.80 105.30 $2.12.0$ $6d-152(n,y)$ $6d-153$ 240.4 240.4 69.67 97.43 2.42 92.00 21.11				1212.95		1.42	
Eu-152m9.31h121.78 344.28 841.577.00 844.20 11.67Eu-151(n,y)Eu-1548.59y123.07 247.92 591.76 692.42 13.30 122.75 1004.72 123.01 122.77 135.1940.79 6.95 				1299.14		1.62	
Eu-152m 9.31 h 121.78 344.28 841.57 7.00 1.67 Eu-151(n,y) Eu-154 8.59 y 123.07 247.92 40.79 6.95 591.76 Eu-153(n,y) Eu-154 8.59 y 123.07 275.30 20.22 756.76 4.99 4.57 Eu-153(n,y) Eu-155 4.76 y 45.30 60.01 86.54 1.33 80.50 Eu-153(2n,y) Gd-153 240.4 d 69.67 97.43 2.42 2.11 Gd-152(n,y)				1408.00	*	21.00	
La 151John II.Ja4.28 344.28 963.392.38 11.67La 151(y) (y)Eu-154 8.59 y123.07 247.92 6.95 591.76 64.99 662.42 723.30 723.30 20.22 756.76 873.19 12.27 996.26 1060 1004.72 1274.44 18.01 1274.44 1274.44 *Eu-153(n,y) Eu-153(n,y)Eu-155 4.76 y 45.30 60.01 105.30 * 21.201.33 21.20Eu-153(2n,y)Gd-153240.4d 69.67 97.43 8.18 21.112.42 2.900 2.111Gd-152(n,y)	Fu-152m	9 31	h	121 78		7 00	Fu-151(n v)
		0.01		344.28		2.38	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				841.57	*	14.20	
Eu-1548.59y123.07 247.92 591.76 692.42 723.30 873.19 996.26 1004.72 1274.4440.79 6.95 4.99 12.02 1.80 20.22 1.80 10.20 10.61 1.27 1.801 				963.39		11.67	
Eu-155 4.76 γ 45.30 1.33 Eu-153(2n,γ) Eu-155 4.76 γ 45.30 1.13 60-153 240.4 d 69.67 2.42 00-153 240.4 d 69.67 2.42 103.18 21.11 6.95 6.95 6.95 591.76 4.57 4.57 4.57 4.57 873.19 12.27 996.26 10.60 1004.72 18.01 1004.72 18.01 1274.44 35.19 1.33 Eu-153(2n,γ) 60.01 1.13 86.54 30.80 105.30 * 21.20 6d-153 240.4 69.67 2.42 6d-152(n,γ) 6d-152(n,γ)	Fu-154	8.59	v	123.07		40.79	Fu-153(n.v)
			,	247.92		6.95	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				591.76		4.99	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				692.42		1.80	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				723.30		20.22	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				756.76		4.57	
996.26 10.60 1004.72 18.01 1274.44 * 50.155 4.76 γ 4.76 γ 45.30 1.33 60.01 1.13 86.54 30.80 105.30 * 21.20 Gd-153 240.4 d 69.67 97.43 * 29.00 103.18 21.11 Gd-152(n,γ)				8/3.19		12.27	
Eu-155 4.76 γ 45.30 60.01 1.33 1.13 86.54 105.30 * Eu-153(2n,γ) Gd-153 240.4 d 69.67 97.43 * 2.42 29.00 103.18 Gd-152(n,γ)				996.26		10.60	
Eu-155 4.76 γ 45.30 1.33 Eu-153(2n,γ) 60.01 1.13 86.54 30.80 105.30 * 21.20 Gd-153 240.4 d 69.67 2.42 Gd-152(n,γ) 103.18 21.11 60.152(n,γ) 60.152(n,γ)				1004.72	*	35 19	
Eu-155 4.76 γ 45.30 1.33 Eu-153(2n,γ) 60.01 1.13 86.54 30.80 105.30 * 21.20 Gd-152(n,γ) Gd-153 240.4 d 69.67 2.42 Gd-152(n,γ) 103.18 21.11 29.00 103.18 21.11				1274.44		55.15	
60.01 1.13 86.54 30.80 105.30 * 21.20 Gd-153 240.4 d 69.67 2.42 97.43 * 29.00 103.18 21.11	Eu-155	4.76	у	45.30		1.33	Eu-153(2n,γ)
Gd-153 240.4 d 69.67 2.42 Gd-152(n,γ) 97.43 * 29.00 103.18 21.11				60.01		1.13	
Gd-153 240.4 d 69.67 2.42 Gd-152(n,γ) 97.43 * 29.00 103.18 21.11				86.54	*	30.80	
Gd-153 240.4 d 69.67 2.42 Gd-152(n,γ) 97.43 * 29.00 103.18 21.11				105.30		21.20	
97.43 * 29.00 103.18 21.11	Gd-153	240.4	d	69.67		2.42	Gd-152(n,γ)
103.18 21.11				97.43	*	29.00	
				103.18		21.11	
Gd-159 18.48 h 58.00 2.15 Gd-158(n,γ)	Gd-159	18.48	h	58.00		2.15	Gd-158(n,γ)
363.55 * 11.40				363.55	*	11.40	

Table 6 Properties of the radioactive isotopes arranged by atomic number
Table 6. Froperties of the fauloactive isotopes affailiged by atomic number.

			Energy		Abundance	
Isotope	Half-	life	(keV)		(%)	Production Mode(s)
Gd-161	3.66	m	102.32		13.87	Gd-160(n,y)
			283.55		5.95	
			314.92		22.70	
			360.94	*	60.05	
Tb-160	72.3	d	86.79		13.15	Tb-159(n.v)
	-		197.04		5.18	
			215.65		4.02	
			298.58		26.13	
			392.51		2.34	
			765.28		2.14	
			879.38	*	30.10	
			962.32		9.81	
			966.17		25.10	
			1002.88		1.04	
			1115.12		1.56	
			1177.96		14.87	
			1199.89		2.38	
			1271.88		7.44	
			1312.14		2.86	
Tb-161	6.9	d	25.65		23.20	Tb-159(2n,γ); Gd-160(n,γ)
			48.92		17.00	parent = Gd-161 [3.66 m]
			74.57	*	10.20	
Dy-157	8.14	h	326.16	*	92.0	Dγ-156(n,γ)
Dy-159	144.4	d	58.00	*	2.22	Dγ-158(n,γ)
Dy-165	2.33	h	94.70	*	3.58	Dy-164(n,γ)
			279.76		0.50	
			361.67		0.84	
			633.43		0.57	
Dy-165m	1.26	m	108.16	*	3.01	Dy-164(n,γ)
			515.47		1.53	
Dy-166	81.6	h	82.47	*	14.00	Dy-164(2n,γ)
			371.76		0.52	
			426.00		0.58	
Ho-166	26.83	h	80.57	*	6.71	Ho-165(n,γ);
			1379.40		0.93	parent = Dy-166 [81.6 h]
Ho-166m	1200	у	80.57		12.33	Ho-165(n,γ)
			184.41	*	72.60	
			280.46		29.77	
			300.76		3.73	
			410.94		11.41	
			451.52		2.98	
			529.80		9.69	
			570.99		5.55	
			670.50		5.48	
			/11.68		55.32	
			/52.28		12.29	
			//8.82		3.08	
			810.28 830.58		58.08 9.82	
Er 162	75	~	207.00		0.01	Er 167(n.v)
LI-103	75		297.88 196.10	*	0.01	LI-102(11,Y)
			420.10		0.29	
			1113.50		0.05	
Er 16E	10.20	h	~~ /-			Fr(164/2n)
FI-102	10.30		no (s			LI-104(11,Y)

	Table 6.	Properties	of the ra	adioactive	isotopes a	arranged b	y atomic nur	nber.
--	----------	------------	-----------	------------	------------	------------	--------------	-------

			Energy		Abundance	
Isotope	Half-	life	(keV)		(%)	Production Mode(s)
Er-167m	2.27	S	207.81	*	41.7	Er-166(n,γ)
Er-169	9.4	d	weak ys			Er-168(n,γ)
Er-171	7.52	h	111.62		20.5	Er-170(n,v)
			124.02		9.1	
			295.90		28.9	
			308.29	*	64.4	
Er-172	49.3	h	59.69		2.69	Er-170(2n,y)
			68.11		3.29	
			127.80		2.13	
			202.72		1.03	
			383.50		2.35	
			407.34	*	42.1	
			446.02		2.96	
			475.44		1.04	
			610.06		44.2	
Tm-170	128.6	d	84.25	*	2.50	Tm-169(n,γ)
Tm-171	1.92	У	66.72	*	0.14	Tm-169(2n,γ); Er-170(n,γ)
						$parent = Er \cdot 1/1 [7.52 h]$
Tm-172	63.6	h	78.74		6.50	Er-170(2n,γ)
			181.53		2.75	parent = Er-172 [49.3 h]
			1093.66	*	6.00	
			1387.09		5.60	
			1465.93		4.50	
			1529.72		5.10	
			1608.56		4.14	
Yb-169	32.03	d	63.12		44.20	Yb-168(n,γ)
			109.78		17.47	
			130.52		11.31	
			177.21	*	22.16	
			197.96		35.80	
			307.74		10.05	
Yb-175	4.19	d	113.80		1.88	Yb-174(n,γ)
			282.52		3.01	
			396.33	*	6.40	
Yb-177	1.91	h	121.62		3.42	Yb-176(n,γ)
			138.61		1.34	
			150.39	*	20.30	
			1080.21		5.60	
			1241.20		3.47	
Lu-176m	3.64	h	88.34	*	8.9	Lu-175(n,γ)
Lu-177	6.73	d	112.95		6.40	Lu-176(n,γ);
			208.37	*	11.00	parent = Yb-177 [1.91 h]
			249.67		0.21	
			321.32		0.22	
Lu-177m	160.4	d	105.36		12.3	Lu-176(n,γ)
			112.95		20.4	most gamma rays are from
			128.50		15.5	decay of Hf-177m [1.0 s]
			153.28		16.9	
			174.40		12.6	
			204.10		13.8	
			208.37	*	57.7	
			228.48		37.0	
			281./9		14.1	

Table 6. Properties of the radioactive isotop	pes arranged by atomic number.
---	--------------------------------

		Energy	Abundance	
Isotope	Half-life	(keV)	(%)	Production Mode(s)
		319.02 327.68 378.50 413.66 418.54	10.5 18.1 29.7 17.4 21.3	
Hf-175	70 d	343.40 *	84.00	Hf-174(n,y)
Hf-177m2	51.4 m	214.00 277.30 295.10 311.50 326.70 *	42.0 78.0 72.0 61.0 68.0	Hf-176(n,γ)
Hf-180m	5.5 h	57.55 215.26 332.28 * 443.09	48.0 81.3 94.1 81.9	Hf-179(n,γ)
Hf-181	42.39 d	133.02 136.27 345.92 482.18 *	43.30 5.85 15.12 80.50	Hf-180(n,γ)
Hf-182m	61.5 m	50.80 97.80 224.40 344.10 * 455.80 506.60 799.60 942.80	12.22 8.52 34.90 42.23 18.50 21.64 9.42 18.85	Hf-181(2n,γ)
Ta-182	114.43 d	65.71 67.75 84.68 100.11 113.67 152.43 156.39 179.39 222.11 229.32 264.07 1001.70 1121.30 1189.05 1221.41 * 1231.02 1257.42 1289.16	2.92 41.20 2.65 14.10 1.88 6.93 2.64 3.08 7.49 3.63 3.61 2.07 34.90 16.23 26.98 11.44 1.49 1.35	Ta-181(n,γ)
Ta-182m	15.84 m	146.78 171.58 * 184.95 318.36	37.2 49.0 24.5 6.9	Ta-181(n,γ)
Ta-183	5.1 d	99.08 107.93 144.12 160.53 161.53 162.32 209.87 244.26 246.06 * 291.72 313.27 353.99	6.70 11.00 2.49 2.92 8.90 4.88 4.48 8.50 27.00 3.73 4.20 11.20	Ta-181(2n,γ)

	Table 6.	Properties	of the ra	adioactive	isotopes a	arranged b	y atomic nur	nber.
--	----------	------------	-----------	------------	------------	------------	--------------	-------

Isotope	Half-	life	Energy (keV)		Abundance (%)	Production Mode(s)
						· · · ·
W-181	121.2	d	136.27	*	0.031	W-180(n,γ)
			152.52		0.008	
W-185	75.1	d	125.36	*	0.019	W-184(n,γ)
M/ 405	4.67			*	5.00	
W-185m	1.67	m	65.86 131.55	*	5.80	W-184(n,γ)
			173.68		3.26	
W-187	23.72	h	72.00		11.14	W-186(n,γ)
			134.24	*	8.85 21.80	
			551.53		5.08	
			618.36		6.28	
			685.77		27.30	
			772.89		4.12	
			864.64		0.34	
W-188	69.4	Ь	227.08		0.22	W-186(n y)
			290.67	*	0.40	
					0.00	
Re-186	90.64	n	122.30	*	0.60	Re-185(n,γ)
			137.10		9.42	
Re-188	17	h	155.03	*	15.10	Re-187(n,γ); W-186(2n,γ)
			477.99		1.02	parent = W-188 [69.4 d]
			632.99		1.27	
Re-188m	18.6	m	63.58		21.6	Re-187(n.v): W-186(2n.v)
			92.46		5.2	parent = W-188 [69.4 d]
			105.87	*	10.8	
Os-185	93.6	Ь	646 12	*	78 00	$O_{s-184}(n_{v})$
00 200	5010		717.42		3.94	
			874.81		6.29	
			880.52		5.17	
Os-190m	9.9	m	186.72		70.20	Os-189(n,γ)
			361.14	*	94.88	
			502.53		97.79	
			616.08		98.62	
Os-191	15.4	d	129.42	*	29.00	Os-190(n,γ)
0. 101-	12.1	h	74.20	*	0.07	0 = 100(=)
OS-191m	13.1	n	74.38	·	0.07	Ος-190(η,γ)
Os-193	30.1	h	73.04		3.20	Os-192(n,γ)
			138.94		4.27	
			280.46		1.24	
			321.60		1.28	
			387.52	*	1.26	
			460.55	•	3.95	
			557.45		1.50	
Os-194	6	У	43.12	*	5.00	Os-192(2n,γ)
lr-192	73.8	d	205.80		3.30	lr-191(n,γ)
			295.96		28.67	
			308.46		30.00	
			316.51	*	82.81	
			468.07		4/.83	
			484.58		3.18 1 ED	
			566.59 601 11		4.52 & 72	
			612 46		5.31	
			012.10		0.01	

Table 6. Properties of the radioactive	isotopes arranged by atomic number.
--	-------------------------------------

			Energy		Abundance	
Isotope	Half	life	(keV)		(%)	Production Mode(s)
lr-192m	1.45	m	58.00	*	0.04	lr-191(n,γ)
L. 404	10.20	Ŀ	202 54		2.52	
Ir-194	19.28	n	293.54	*	2.52	Ir-193(n,γ)
			528.40		15.10	
lr-194m2	171	d	328.46		92.8	Ir-193(n,γ)
			338.80	*	55.1	
			390.80		35.1	
			482.83		96.9	
			502.04		62.3	
			687.70		59.1	
			1011.80		3.6	
Pt-191	2.8	d	82.41		4.90	Pt-190(n,γ)
			96.52		3.28	
			129.42		3.20	
			268 73		1.65	
			351.21		3.36	
			359.90		6.00	
			409.44		8.10	
			456.50		3.36	
			538.91	*	13.70	
			624.08		1.41	
Pt-193	50	у	no γs			Pt-192(n,γ)
Pt-193m	4.33	d	weak ys			Pt-192(n,γ)
Pt-195m	4.02	d	30.90		2.28	Pt-194(n,γ)
			98.85	*	11.40	
			129.70		2.83	
Pt-197	19.89	h	77.34	*	17.0	Pt-196(n,y)
			191.44		3.7	
Pt-197m	95.41	m	279.01		2.4	Pt-196(n,γ)
			346.50	*	11.1	
Pt-199	30.8	m	185.77		3.32	Pt-198(n,y)
			191.71		2.34	
			246.46		2.23	
			317.06		4.95	
			493.77		5.59	
			542.99	*	15.00	
Pt-199m	13.6	S	391.93	*	85.0	Pt-198(n,γ)
Au-196	6.18	d	332.98		22.9	Au-197(n,2n)
			355.68	*	87.0	
			426.00		7.0	
Au-198	2.70	d	411.80	*	96.0	Au-197(n.v)
	•		675.88		0.80	
			1087.68		0.16	
Διι-199	2 1/	Ь	158 38	*	<u>40 00</u>	Δμ-197(2n y)· Pt-198(n y)
Au 199	5.14	u	208.20		8.73	parent = $Pt-199$ [30.8 m]
						,
Hg-197	64.14	h	77.35	*	18.7	Hg-196(n,γ)
Ha-107m	ר בר	h	122.00	*	22.0	Hg-197(n y)
111/67-311	23.8		133.99 270 01		55.U 6 0	118-73/(11,4)
			279.01		0.0	
Hg-199m	42.6	m	158.38	*	52.0	Hg-198(n,γ)
			374.10		13.8	

rable of the famoustive isotopes arranged by atomic maniser

	lielf	1:4-	Energy		Abundance	
Isotope	Hait-	lite	(kev)		(%)	Production Mode(s)
Hg-203	46.6	d	279.20	*	81.0	Hg-202(n,γ)
Hg-205	5.2	m	203.75	*	2.2	Hg-204(n,γ)
TI-208	3.05	m	277.35		6.31	parent = Th-232 [1.40E10 y]
			510.77		22.60	
			583.19		84.50	
			860.56		12.42	
			2614.53	*	99.00	
Pb-212	10.64	h	238.63	*	43.30	parent = Th-232 [1.40E10 y]
			300.09		3.28	
Pb-214	26.8	m	242.00		7.43	parent = U-238 [4.5E09 y]
			295.22		19.30	
			351.93	*	37.60	
Bi-212	60.6	m	727.33	*	6.58	parent = Th-232 [1.40E10 y]
			785.37		1.10	
			1620.50		1.49	
Bi-214	19.9	m	609.31	*	46.10	parent = U-238 [4.5E09 y]
			768.35		4.94	
			934.04		3.03	
			1120.27		15.10	
			1238.11		5.79	
			1377.66		4.00	
			1407.98		2.15	
			1720 58		2.11	
			1764 49		15 40	
			1847.42		2.11	
			2204.21		5.08	
Ra-226	1600	У	186.21	*	3.59	parent= U-238 [4.5E09 y]
Ac-228	6.15	h	99.51		1.26	parent= Th-232 [1.40E10 y]
			129.06		2.42	
			209.25		3.89	
			270.24		3.46	
			328.00		2.95	
			556.52 100 16		1 02	
			463.00		4 44	
			772.29		1.49	
			794.95		4.25	
			835.71		1.61	
			911.20	*	25.80	
			964.77		4.99	
			968.97		15.80	
			1588.21		3.22	
			1630.63		1.51	
Th-233	22.3	m	29.37		2.50	Th-232(n,γ)
			86.47		2.70	
			94.66	*	0.80	
			459.22	4	1.40	
			009.90		0.08	
Pa-233	27	d	75.35		1.39	Th-232(n,γ)
			86.81		1.97	parent = Th-233 [22.3 m]
			103.97		0.87	
			300.34	-	6.62	
			312.17	*	38.60	
			340.81		4.4/	
			398.62		1.39	
			415.76		1.74	

Table 6.	Properties	of the ra	adioactive	isotopes a	arranged b	by atomic num	ber.

Isotope	Half-	life	Energy (keV)		Abundance (%)	Production Mode(s)
Th-234	24.1	d	63.29	*	4.80	parent= U-238 [4.5E09 y]
			92.38		2.81	
			92.80		2.77	
Pm-234m	1.17	m	766.38		0.29	parent= U-238 [4.5E09 y]
			1001.03	*	0.84	
U-235	7.10E+08	v	109.16		1.54	natural product
		'	143.76		10.96	· · · · · ·
			163.36		5.08	
			185.71	*	57.00	
			205.31		5.01	
U-239	23.47	m	43.53		4.14	U-238(n.v)
	-		74.66	*	48.00	
Np-239	2.36	d	106.12		27.20	U-238(n.v)
			209.75		3.42	parent = U-239 [23.47 m]
			228.18		10.76	havene e ()
			277.60	*	14.38	
			315.88		1.60	
			334.31		2.07	
Am-241	432.2	y	59.54	*	35.9	multiple neutron captures

Table 7. Ba	ckground peaks comm	only observed in ga	mma-ray spectra.

Energy (keV)	Radionuclide	Source
63.2	Th-234	U-238 (half-life = 4.5E+09 y)
75.0	Kα X-ray from Pb	induced X-ray fluorescence on lead
84.9	Kβ X-ray from Pb	induced X-ray fluorescence on lead
92.4	Th-234	U-238 (half-life = 4.5E+09 y)
92.8	Th-234	U-238 (half-life = 4.5E+09 y)
99.5	Ac-228	Th-232 (half-life = 1.405E+10 y)
109.2	U-235	U-235 (half-life = 7.0E+08 y)
129.1	Ac-228	Th-232 (half-life = 1.405E+10 y)
143.8	U-235	U-235 (half-life = 7.0E+08 y)
154.0	Ac-228	Th-232 (half-life = 1.405E+10 y)
163.4	U-235	U-235 (half-life = $7.0E+08 y$)
185.7	U-235	U-235 (half-life = 7.0E+08 y)
186.2	Ra-226	U-238 (half-life = 4.5E+09 y)
209.2	Ac-228	Th-232 (half-life = 1.405E+10 y)
238.6	Pb-212	Th-232 (half-life = 1.405E+10 y)
242.0		
242.0	PD-214	U-238 (nait-life = 4.5E+U9 y)
270.2 277 A	AL-220 TI 200	111-232 (11d11-1110 = 1.4050+10 y) The 222 (half life = 1.4050+10 y)
277.4	11-200 Dh 212	Th 222 (half-life – $1.402E+10$ y) Th 222 (half-life – $1.40E+10$ y)
200.1 205 2	PD-212 Ph-21/	$11_{238} \text{ (hall-life} = 1.403\text{ ETO} \text{ v)}$
233.2	FN-214	0-230 (1101-111C - 4.3LT03 ¥)
328.0	Ac-228	Th-232 (half-life = 1.405E+10 v)
338.3	Ac-228	Th-232 (half-life = $1.405E+10 v$)
351.9	Pb-214	U-238 (half-life = $4.5E+09 v$)
356.0	Bi-214 & TI-210	U-238 (half-life = 4.5E+09 y)
409.5	Ac-228	Th-232 (half-life = 1.405E+10 y)
		· //
463.0	Ac-228	Th-232 (half-life = 1.405E+10 y)
510.7	TI-208	Th-232 (half-life = 1.405E+10 y)
511.0	Annihilation peak	Cosmic rays & pair production
562.5	Ac-228	Th-232 (half-life = 1.405E+10 y)
583.2	TI-208	Th-232 (half-life = 1.405E+10 y)
609.3	Bi-214	U-238 (half-life = 4.5E+09 y)
661.6	Cs-137	Fission product
665.4	Bi-214	U-238 (half-life = 4.5E+09 y)
703.1	Bi-214	U-238 (half-life = 4.5E+09 y)
719.9	Bi-214	U-238 (half-life = 4.5E+09 y)
726.9	Ac-228	Th-232 (half-life = 1.405E+10 y)
727.3	Bi-212	Th-232 (half-life = 1.405E+10 y)
755.3	Ac-228	Th-232 (half-life = 1.405E+10 y)
766.4	Pa-234	U-238 (half-life = $4.5E+09 y$)
768.4	Bi-214	U-238 (half-life = 4.5E+09 y)

Table 7. Background peaks common	y observed in gamma-ray spectra.
----------------------------------	----------------------------------

Energy (keV)	Radionuclide	Source		
772.3	Ac-228	Th-232 (half-life = 1.405E+10 y)		
785.4	Bi-212	Th-232 (half-life = 1.405E+10 y)		
786.3	Pa-234m	U-238 (half-life = 4.5E+09 y)		
794.9	Ac-228	Th-232 (half-life = 1.405E+10 y)		
806.2	Bi-214	U-238 (half-life = 4.5E+09 y)		
835.7	Ac-228	Th-232 (half-life = 1.405E+10 y)		
840.4	Ac-228	Th-232 (half-life = 1.405E+10 y)		
860.6	TI-208	Th-232 (half-life = 1.405E+10 y)		
911.2	Ac-228	Th-232 (half-life = 1.405E+10 y)		
934.0	Bi-214	U-238 (half-life = 4.5E+09 y)		
964.8	Ac-228	Th-232 (half-life = 1.405E+10 y)		
969.0	Ac-228	Th-232 (half-life = 1.405E+10 y)		
1001.0	Pm-234m	U-238 (half-life = 4.5E+09 y)		
1120.3	Bi-214	U-238 (half-life = 4.5E+09 y)		
1155.2	Bi-214	U-238 (half-life = 4.5E+09 y)		
1173.2	Co-60	Co-60 (half-life = 5.27 y)		
1238.1	Bi-214	U-238 (half-life = 4.5E+09 y)		
1281.0	Bi-214	U-238 (half-life = 4.5E+09 y)		
1332.5	Co-60	Co-60 (half-life = 5.27 y)		
1377.7	Bi-214	U-238 (half-life = 4.5E+09 y)		
1401.5	Bi-214	U-238 (half-life = 4.5E+09 y)		
1408.0	Bi-214	U-238 (half-life = 4.5E+09 y)		
1460.8	К-40	K-40 (half-kife = 1.251e+09 y)		
1509.2	Bi-214	U-238 (half-life = 4.5E+09 y)		
1588.2	Ac-228	Th-232 (half-life = 1.405E+10 y)		
1592.5	TI-208 [DE from 2614]	Th-232 (half-life = 1.405E+10 y)		
1620.5	Bi-212	Th-232 (half-life = 1.405E+10 y)		
1630.6	Ac-228	Th-232 (half-life = 1.405E+10 y)		
1661.3	Bi-214	U-238 (half-life = 4.5E+09 y)		
1729.6	Bi-214	U-238 (half-life = 4.5E+09 y)		
1764.5	Bi-214	U-238 (half-life = 4.5E+09 y)		
1847.4	Bi-214	U-238 (half-life = 4.5E+09 y)		
2103.5	TI-208 [SE from 2614]	Th-232 (half-life = 1.405E+10 y)		
2204.2	Bi-214	U-238 (half-life = 4.5E+09 y)		
2614.5	TI-208	Th-232 (half-life = 1.405E+10 y)		

	Table 8.	Gamma ray	s arranged by	y energy	(half-lives <	< 1	day)).
--	----------	-----------	---------------	----------	---------------	-----	------	----

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
27.0	To 120	60.6	m	450.6	107 1	
27.8	Th-233	22.3	m	459.0	487.4	94 7
37.1	Br-80m	4.42	h			
43.5	U-239	23.47	m	74.7		
50.8	Hf-182m	61.5	m	344.1	244.4	506.6
51.4	Rh-104m	4.34	m	97.1	77.6	555.8
57.6	Hf-180m	5.5	h	332.3	443.1	215.3
58.0	lr-192m	1.45	m			
58.0	Gd-159	18.48	h	363.6		
58.6	Co-60m	10.47	m	1332.5		
59.0	Xe-125	16.9	h	188.4	243.4	453.8
59.8	Pd-111	23.4	m	580.0	650.4	376.7
61.4	Sb-122m	4.19	m	76.1		
63.6	Re-188m	18.6	m	105.9	92.5	
70.4	Pd-111m	5.5	h	172.2	391.3	
70.4	Pd-111	23.4	m	580.0	650.4	376.7
72.0	W-187	23.72	h	479.5	685.8	618.4
74.7	U-239	23.47	m	43.5		
76.1	Sb-122m	4.19	m	61.4		
77.3	Pt-197	19.89	h	191.4		
77.4	Sn-113m	21.4	m			
77.6	Rh-104m	4.34	m	51.4	97.1	555.8
86.5	Th-233	22.3	m	459.2	94.7	669.9
88.0	Pd-109	13.7	h			
88.3	Lu-176m	3.64	h			
92.5	Re-188m	18.6	m	105.9	63.6	
93.1	Cd-107	6.5	h			
94.7	Th-233	22.3	m	459.2	86.5	669.9
95.7	Se-79m	3.92	m			
97.1	Rh-104m	4.34	m	51.4	77.6	555.8
97.8	Hf-182m	61.5	m	344.1	224.4	506.6
98.0	I-132m	83.2	m	173.7		
102.3	Gd-161	3.66	m	360.9	314.9	283.6
103.0	Se-81m	57.3	m			
104.3	Sm-155	22.3	m	245.8	141.4	
105.9	Re-188m	18.6	m	63.6	92.5	
108.1	Ba-131m	14.6	m			
108.2	Dy-165m	1.26	m	515.5		
111.6	Er-171	7.52	h	308.3	295.9	124.0
114.3	Nd-149	1.73	h	211.3	270.2	423.6
116.8	Nd-151	12.4	m	1180.9	255.7	
121.6	Yb-177	1.91	h	150.4	1080.2	1241.2
121.8	Eu-152m	9.31	h	841.6	963.4	344.3
124.0	Er-171	7.52	h	308.3	295.9	111.6
127.5	Cs-134m	2.9	h			
129.1	Ac-228	6.15	h	911.2	969.0	338.3
131.6	W-185m	1.67	m	173.7		
134.0	Hg-197m	23.8	h	279.0		
134.2	W-187	23.72	h	479.5	685.8	618.4
138.3	In-116m	54.15	m	1097.3	1293.6	416.9
138.6	Yb-177	1.91	h	150.4	1080.2	1241.2
139.7	Ge-75m	47.7	S			
140.5	1c-99m	6.01	h			
141.4	Sm-155	22.3	m	104.3	245.8	
142.5	SC-46m	18.8	S			
146.8	Ta-182m2	15.84	m	171.6	185.0	
149.7	le-131	25	m	452.3		
150.4	Yb-177	1.91	h	1080.2	1241.2	121.6

Table 8.	Gamma rays arranged by	y energy (half-lives < 1 day).

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
150.9	Cd 111m	10 E	m	245 4		
150.8	Kr-85m	48.5	h	304 9		
155.0	Re-188	17	h			
155.0	Nd-149	1 73	h	211 3	270.2	114 3
158.4	Hg-199m	42.6	m	374.1		
158.6	In-117	43.2	m	553.0		
158.6	In-117m	116.2	m	315.3		
159.7	Ge-77m	52.9	S	215.5		
160.3	Sn-123m	40.08	m			
161.9	Se-77m	17.36	s			
165.9	Ba-139	83.06	m			
171.6	Ta-182m2	15.84	m	146.8	185.0	
172.2	Pd-111m	5.5	h	391.3	70.4	
173.7	W-185m	1.67	m	131.6		
173.7	I-132m	83.2	m	98.0		
185.0	Ta-182m2	15.84	m	171.6	146.8	
185.8	Pt-199	30.8	m	543.0	493.8	317.1
186.7	Os-190m	9.9	m	361.1	616.1	502.5
188.4	Xe-125	16.9	h	243.4	453.8	59.0
189.0	Pd-109m	4.7	m			
191.4	Pt-197	19.89	h	77.3		
191.7	Pt-199	30.8	m	543.0	493.8	317.1
191.9	Mo-101	14.6	m	590.1	505.9	1012.5
196.3	Kr-88	2.84	h	834.8	1529.8	2391.1
197.1	O-19	26.91	S	1356.8	1444.2	
202.5	Y-90m	3.19	h	479.2		
203.8	Hg-205	5.2	m			
207.8	Er-167m	2.27	S			
209.3	Ac-228	6.15	h	911.2	969.0	338.3
211.0	Ge-77	11.3	h	264.4	215.5	367.4
211.3	Nd-149	1.73	h	270.2	114.3	423.6
214.0	Hf-177m2	51.4	m	295.1	277.3	326.7
214.9	Pd-107m	21.3	S			
215.3	Hf-180m	5.5	h	332.3	443.1	57.6
215.5	Ge-77	11.3	h	264.4	211.0	367.4
215.5	Ge-77m	52.9	S	159.7		
224.4	Hf-182m	61.5	m	344.1	506.6	455.8
224.8	Se-83	22.3	m	356.7	718.1	799.1
231.7	Sr-85m	67.6	m			
238.6	Pb-212	10.64	h	300.1		
240.2	Nd-149	1.73	h	211.3	270.2	114.3
243.4	Xe-125	16.9	h	188.4	453.8	59.0
245.4	Cd-111m	48.6	m	150.8		
245.8	Sm-155	22.3	m	104.3	141.4	
246.5	Pt-199	30.8	m	543.0	493.8	317.1
249.0	Pb-214	26.8	m	351.9	295.2	
249.8	Xe-135	9.14	h			
255.7	Nd-151	12.4	m	1180.9	116.8	
258.4	Xe-138	14.1	m	434.6	1768.3	2015.8
262.8	Ru-105	4.44	h	724.3	469.4	676.4
263.1	Mo-93m	6.85	h	684.7	1477.1	
264.4	Ge-77	11.3	h	211.0	215.5	367.4
264.7	Ge-75	82.8	m			
267.7	Nd-149	1.73	h	211.3	270.2	114.3
270.2	Nd-149	1.73	h	211.3	114.3	423.6
270.2	Ac-228	6.15	h	911.2	969.0	338.3
273.4	Cd-117	2.49	h	344.5	434.2	1303.3
276.0	Se-81	18.5	m	290.1		

Table 8. Gamma rays arranged by energy (half-lives < 1 da

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
277.2		F 4 4		205.4	226 7	244 5
277.3 277.4	HT-177m2 TL-208	51.4 3.05	m	295.1	320.7 583.2	311.5
277.4	Hg_197m	3.03	h	2014.3	565.2	800.0
279.0	Dt-197m	25.8 95 /1	m	3/6 5		
279.8	Dy-165	2 33	h	94.7	361 7	633.4
275.0	Gd-161	3.66	m	360.9	31/1 9	102.3
200.0	Se-81	18 5	m	276.0		
293.5	Ir-194	19.28	h	328.5		
295.1	Hf-177m2	51.4	m	277.3	326.7	311.5
295.2	Pb-214	26.8	m	351.9	249.0	
295.9	Er-171	7.52	h	308.3	111.6	124.0
297.9	Er-163	75	m	436.1	439.9	1113.5
300.1	Pb-212	10.64	h	238.6		
304.9	Kr-85m	4.48	h	151.2		
306.9	Tc-101	14.2	m	545.1		
308.3	Er-171	7.52	h	295.9	111.6	124.0
311.4	Pd-109	13.7	h	88.0	647.3	
311.5	Hf-177m2	51.4	m	295.1	277.3	326.7
312.6	K-42	12.36	h	1524.7		
314.9	Gd-161	3.66	m	360.9	102.3	283.6
315.3	In-117m	116.2	m	158.6		
316.4	Ru-105	4.44	h	724.3	469.4	676.4
317.1	Pt-199	30.8	m	543.0	493.8	191.7
320.1	Ti-51	5.76	m	928.6	608.6	
326.2	Dy-157	8.14	h			
326.6	Nd-149	1.73	h	211.3	270.2	114.3
326.7	Hf-177m2	51.4	m	295.1	277.3	311.5
328.0	Ac-228	6.15	h	911.2	969.0	338.3
328.5	Ir-194	19.28	h	293.5		
332.1	Sn-125m	9.52	m			
332.3	Hf-180m	5.5	h	443.1	215.3	57.6
336.3	In-115m	4.49	h			
338.3	Ac-228	6.15	h	911.2	969.0	964.8
344.1	Hf-182m	61.5	m	224.4	506.6	455.8
344.3	Eu-152m	9.31	h	841.6	963.4	121.8
344.5	Cd-117	2.49	h	273.4	434.2	1303.3
346.5	Pt-197m	95.41	m	279.0		
351.9	Pb-214	26.8	m	295.2	249.0	
355.4	Zr-97	16.91	h	743.4	507.6	1148.0
356.7	Se-83m	70.1	S	674.0		
356.7	Se-83	22.3	m	224.8	718.1	799.1
360.9	Gd-161	3.66	m	314.9	102.3	283.6
361.1	Os-190m	9.9	m	616.1	502.5	186.7
361.7	Dy-165	2.33	h	94.7	279.8	633.4
363.6	Gd-159	18.48	h	58.0		
366.3	Ni-65	2.52	h	1481.8	1115.6	
367.4	Ge-77	11.3	h	264.4	211.0	215.5
374.1	Hg-199m	42.6	m	158.4		
376.7	Pd-111	23.4	m	580.0	650.4	1388.4
386.3	Zn-71m	3.96	h	487.4	620.2	596.1
388.5	Sr-87m	2.8	h			
391.3	Pd-111m	5.5	h	1/2.2	/0.4	
391.7	In-113m	1.66	h			
391.9	Pt-199m	13.6	S			
402.6	Kr-87	76.3	m	845.4	2554.8	2558.1
409.5	Ac-228	6.15	h	911.2	969.0	338.3
416.3	Ge-77	11.3	h	264.4	211.0	215.5
416.9	In-116m	54.15	m	1097.3	1293.6	2112.3

	Table 8.	Gamma ray	s arranged by	y energy	(half-lives <	< 1	day)).
--	----------	-----------	---------------	----------	---------------	-----	------	----

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
418.0	Te-127	9.35	h			
423.6	Nd-149	1.73	n	211.3	270.2	114.3
433.9	Ag-108	2.37	m h	633.0	618.9	1202.2
434.2	Ca-117	2.49	n	2/3.4	344.5	1303.3
434.6	Xe-138	14.1	m	258.4	1/68.3	2015.8
430.1	EI-103	/5	nn h	439.9	1113.5	297.9
430.0	CE-137 7n 60m	12 76	n h	447.2		
438.0	Er 162	13.70	m	 126 1	1112 5	207.0
439.9	LI-103 No 22	ر ر د جد	 C	430.1	1115.5	297.9
440.0	1_128	2/ 00	s m	526.6		
442.5	Hf-180m	5 5	h	320.0	215.3	57.6
445.1	Ce-137	J.J 9	h	J36.6	215.5	57.0
452.3	Te-131	25	m	430.0 1/19 7		
453.8	Xe-125	16.9	h	188.4	243.4	59.0
455 5	Xe-137	3 82	m			
455.8	Hf-182m	61 5	m	344 1	224 4	506.6
459.2	Th-233	22.3	m	86.5	94.7	669.9
459.6	Te-129	69.6	m	27.8	487.4	
462.8	Cs-138	33.4	m	1435.8	1009.8	547.0
463.0	Ac-228	6.15	h	911.2	969.0	338.3
469.4	Ru-105	4.44	h	724.3	676.4	316.4
479.2	Y-90m	3.19	h	202.5		
479.5	W-187	23.72	h	685.8	618.4	551.5
487.4	Zn-71m	3.96	h	386.3	620.2	596.1
487.4	Te-129	69.6	m	459.6	27.8	
493.8	Pt-199	30.8	m	543.0	317.1	191.7
498.4	Sb-124m	93	S	645.9	602.7	
502.5	Os-190m	9.9	m	361.1	616.1	186.7
505.8	I-132	2.3	h	667.7	772.6	522.7
505.9	Mo-101	14.6	m	590.1	191.9	1012.5
506.6	Hf-182m	61.5	m	344.1	224.4	455.8
507.6	Zr-97	16.91	h	743.4	355.4	1148.0
510.2	Se-83	22.3	m	356.7	224.8	718.1
510.8	TI-208	3.05	m	2614.5	583.2	860.6
511.0 (Ann)	F-18	109.77	m			
511.0 (Ann)	Al-29	6.56	m	1273.4		
511.0 (Ann)	Cu-64	12.7	h	1345.8		
511.0 (Ann)	Br-80	17.68	m	616.6		
511.6	Zn-71	2.45	m			
511.6	Zn-71m	3.96	h	386.3	487.4	620.2
515.5	Dy-165m	1.26	m	108.2		
522.7	I-132	2.3	h	667.7	772.6	630.2
526.6	I-135	6.57	h	1260.4	1131.5	1678.0
526.6	Xe-135m	15.29	m			
526.6	I-128	24.99	m	442.9		
529.9	I-133	20.8	h	875.3		
540.5	Nd-149	1.73	h	211.3	270.2	114.3
543.0	Pt-199	30.8	m	493.8	317.1	191.7
545.1	Tc-101	14.2	m	306.9		
546.6	I-135	6.57	h	1260.4	1131.5	1678.0
547.0	CS-138	33.4	m	1435.8	462.8	1009.8
551.5	W-18/	23./2	n	4/9.5	685.8	618.4
553.U	IN-11/	43.2	m	158.6		
	KN-104M	4.34	m	51.4	97.1	//.6
555.8		42.3	5			
220.1		11.02	11) b			
558.0	Ge-//	11.3	n	264.4	211.0	215.5

Table 8. Gamma rays arranged by energy (half-lives < 1 da

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
564.4	Cd-117m	3.36	h	1066.0	1997.3	1029.1
580.0	Pd-111	23.4	m	650.4	3/6./	1388.4
583.2	11-208	3.05	m	2614.5	860.6	510.8
590.1	Mo-101	14.6	m	191.9	505.9	1012.5
595.4	1-134	52.5	m	847.0	884.1	10/2.6
596.1	Zn-71m	3.96	h	386.3	487.4	620.2
600.9	Ga-72	14.1	h	630.0	834.0	2201.7
602.7	Sb-124m	93	S	645.9	498.4	
608.6	Ti-51	5.76	m	320.1	928.6	
609.3	Bi-214	19.9	m	1120.3	1764.5	1238.1
616.1	Os-190m	9.9	m	361.1	502.5	186.7
616.6	Br-80	17.68	m	511.0		
618.4	W-187	23.72	h	479.5	685.8	551.5
618.9	Ag-108	2.37	m	633.0	433.9	
620.2	Zn-71m	3.96	h	386.3	487.4	596.1
621.7	I-134	52.5	m	847.0	884.1	595.4
630.0	Ga-72	14.1	h	834.0	2201.7	2507.8
630.2	I-132	2.3	h	667.7	772.6	522.7
631.8	Ge-77	11.3	h	264.4	211.0	215.5
633.0	Ag-108	2.37	m	433.9	618.9	
633.4	Dy-165	2.33	h	94.7	361.7	279.8
645.9	Sb-124m	93	S	498.4	602.7	
647.3	Pd-109	13.7	h	88.0	311.4	
650.4	Pd-111	23.4	m	580.0	376.7	1388.4
654.8	Nd-149	1.73	h	211.3	270.2	114.3
657.8	Ag-110	24.6	S			
658.1	Nb-97	72.1	m			
661.7	Ba-137m	2.55	m			
667.7	I-132	2.3	h	772.6	522.7	630.2
669.9	Th-233	22.3	m	459.2	86.5	94.7
671.4	I-132	2.3	h	772.6	522.7	630.2
674.0	Se-83m	70.1	S	356.7		
676.4	Ru-105	4.44	h	724.3	469.4	316.4
684.7	Mo-93m	6.85	h	1477.1	263.1	
685.8	W-187	23.72	h	479.5	618.4	551.5
695.6	Mo-101	14.6	m	590.1	191.9	505.9
714.4	Ge-77	11.3	h	264.4	211.0	215.5
715.3	Dy-165	2.33	h	94.7	361.7	633.4
718.1	Se-83	22.3	m	356.7	224.8	799.1
724.3	Ru-105	4.44	h	469.4	676.4	316.4
727.3	Bi-212	60.6	m	1620.5	785.4	
743.4	Zr-97	16.91	h	507.6	355.4	1148.0
743.4	Nb-97m	52.7	S			
754.2	Ce-139m	54.8	S			
768.4	Bi-214	19.9	m	609.3	1120.3	1764.5
772.6	I-132	2.3	h	667.7	522.7	630.2
772.9	W-187	23.72	h	479.5	685.8	618.4
776.5	Br-82m	6.13	m			
785.4	Bi-212	60.6	m	727.3	1620.5	
786.8	Cs-135m	53	m	846.1		
795.0	Ac-228	6.15	h	911.2	969.0	338.3
799.1	Se-83	22.3	m	356.7	224.8	718.1
799.6	Hf-182m	61.5	m	344.1	224.4	506.6
812.0	I-132	2.3	h	667.7	772.6	522.7
818.7	In-116m	54.15	m	1097.3	1293.6	416.9
833.5	Cu-66	5.12	m	1039.2		
834.0	Ga-72	14.1	h	630.0	2201.7	2507.8
834.8	Kr-88	2.84	h	196.3	1529.8	2391.1

Table 8. Gamma rays arranged by energy (half-lives < 1 da

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
000 5	6 - 02	22.2		256.7	224.0	740.4
830.5	56-83	22.3	m b	350.7	224.8	/18.1
830.8	Fu-152m	0.37	h	1200.4 963.4	121.2	211 3
841.0	Mg_27	9.31	m	903.4 1014 4	121.0	544.5
845.7 845.4	Kr_87	76.3	m	1014.4	255/1.8	2558 1
845.4 846 1	Cs-135m	70.5	m	786.8	2554.8	2558.1
846.8	Mn-56	2 5 8	h	1810.8	2113 1	
847.0	I-134	52.50	m	884 1	595.4	1072 6
860.4	Cd-117m	3 36	h	1066.0	1997 3	1072.0
860.4	TI-208	3.50	m	2614 5	583.2	510.8
871.1	Nb-94m	6.26	m			
875.3	1-133	20.8	h	529.9		
884.1	I-134	52.5	m	847.0	595.4	1072.6
894.3	Ga-72	14.1	h	630.0	834.0	2201.7
898.0	Rb-88	17.78	m	1836.1		
911.2	Ac-228	6.15	h	969.0	338.3	964.8
928.6	Ti-51	5.76	m	320.1	608.6	
934.0	Bi-214	19.9	m	609.3	1120.3	1764.5
934.2	Mo-101	14.6	m	590.1	191.9	1012.5
942.8	Hf-182m	61.5	m	344.1	224.4	506.6
954.7	I-132	2.3	h	667.7	772.6	522.7
963.4	Eu-152m	9.31	h	841.6	121.8	344.3
964.8	Ac-228	6.15	h	911.2	969.0	338.3
969.0	Ac-228	6.15	h	911.2	338.3	964.8
1009.8	Cs-138	33.4	m	1435.8	462.8	547.0
1012.5	Mo-101	14.6	m	590.1	191.9	505.9
1014.4	Mg-27	9.46	m	843.8		
1029.1	Cd-117m	3.36	h	1066.0	1997.3	1234.6
1038.8	I-135	6.57	h	1260.4	1131.5	1678.0
1039.2	Cu-66	5.12	m	833.5		
1039.2	Ga-70	21.14	m			
1050.7	Ga-72	14.1	h	630.0	834.0	2201.7
1066.0	Cd-117m	3.36	h	1997.3	1029.1	1234.6
1072.6	I-134	52.5	m	847.0	884.1	595.4
1080.2	Yb-177	1.91	h	150.4	1241.2	121.6
1085.2	Ge-77	11.3	h	264.4	211.0	215.5
1097.3	In-116m	54.15	m	1293.6	416.9	2112.3
1113.5	Er-163	75	m	436.1	439.9	297.9
1115.6	Ni-65	2.52	h	1481.8	366.3	
1120.3	Bi-214	19.9	m	609.3	1764.5	1238.1
1131.5	I-135	6.57	h	1260.4	1678.0	526.6
1136.0	1-132	2.3	н	772.6	522.7	630.2
1148.0	Zr-97	16.91	n	/43.4	507.6	355.4
1161.0		14.6	m	590.1	191.9	1012.5
1180.9	N0-151	12.4	m h	116.8	255.7	1020.1
1234.0	CU-11/11	3.30	m	1000.0	1997.3	1029.1
1238.1	BI-214 Vb 177	19.9	n h	009.3 1E0.4	1120.3	1704.5
1241.2	10-177	1.51	n h	1121 5	1678.0	526.6
1260.4	Ci 21	0.57	li h	1151.5	1078.0	520.0
1200.1 1273 <i>/</i>	ΔI-29	6.56	m	511.0		
1293.4	In-116m	54 15	m	1097 3	416 9	2112 3
1293.6	Ar-41	1 83	h			
1303.3	Cd-117	2.49	h	273.4	344.5	434.2
1332.5	Co-60m	10.47	m	58.6		
1345.8	Cu-64	12.7	h	511.0		
1356.8	0-19	26.91	s	197.1	1444.2	
1368.4	Ge-77	11.3	h	264.4	211.0	215.5

Table 8. G	Gamma rays	arranged by	energy	(half-lives	< 1	day).
------------	------------	-------------	--------	-------------	-----	-------

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
1200 0	No. 24	14.00	6	2754.0		
1308.0	Nd-24 Bi-217	14.90	m	2754.0	1120.3	1764 5
1377.7	DI-214 Dd_111	19.9	m	580.0	650 /	376.7
1/22 0	Cd 117m	23.4	h	1066.0	1007.2	1020.1
1432.5	V-52	3.50	m	1000.0	1997.5	1029.1
1434.1	V-32 Cc 129	5.74 22 A	m	462.9	1000 8	547.0
1433.0	0_10	25.4 26.01	· · · ·	402.8	1009.8	547.0
1444.1	L125	6 5 7	s h	1260 /	1121 5	1678.0
1457.0	Dd 111	0.57	m	580.0	650.4	276.7
1438.3	Mo 92m	23.4	h	580.0	050.4	570.7
1477.1	Ni-65	0.85	h	1115 6	203.1	
1401.0	In-116m	5/ 15	m	1007 3	1203.6	/16.9
1524 7	K-10	12.36	h	212.6	1295.0	410.9
1524.7	N-42 Cr 55	12.30	m	512.0		
1520.5	CI-33	3.J 2.94	h	106.2	 0 1 CO	2201 1
1523.0	Mo-101	2.64	m	190.3 590.1	034.0 101 0	505 0
1552.5	Dr 142	14.0	h	550.1	191.9	505.9
1576.6	Cd 117	2.40	h	 272 /	211 5	 121 2
1570.0	Cu-117	2.49	11 h	275.4	544.5	454.2
1588.Z	AL-228	0.15	n m	911.2	909.U 705 A	558.5
1620.5	DI-212	50.0 57.2		127.5	765.4	
1622.0	50-49	57.2	m	1761.9		
1033.0	F-20	11 27.24	S	440.0		
1030.0	INE-23	37.24	5	440.0		
1042.7		37.24	m	2107.4	1120.2	 1764 E
1729.0	BI-214	19.9	m m	609.3	1120.3	1704.5
1/52.7	10-11000 Se 40	54.29	m m	410.9	1097.3	1293.0
1761.9	SC-49	57.2	m m	1022.0	1120.2	1000
1769.2	BI-214 Vo 129	19.9	m	009.3	1120.3	1238.1
1700.5	VE-120	14.1		250.4	454.0	2015.8
1779.0	AI-20 Min EG	2.24	ні ь	 01C 0	2112.1	
1010.0		2.30		040.0	2115.1	
1050.1	KD-00	1/./0	ні ь	630.0	e24.0	2201 7
1001.1	Gd-72	14.1	11 h	1066.0	054.0 1020 1	12201.7
1997.5	Cu-117111 Vo 129	5.50	 m	2000.0	1029.1	1254.0
2015.0	Ne-150	14.1		200.4	454.0	1/06.5
2052.1	1010-101 Cd 117m	14.0	ні ь	1066.0	191.9	1012.5
2090.4	Ln 116m	5.50	m	1000.0	1029.1	1254.0
2112.5	Mp 56	54.15	h	2057.3	1293.0	410.9
2113.1	CL 29	2.50	m	1640.0	1010.0	
2107.4	CI-38 Kr 99	57.24 2.94	h	1042.7	• • • • • • •	1520.9
2195.0	KI-00 Ga 72	2.04	n h	190.5	034.0 924.0	1529.8
2201.7		14.1	m	600.2	1120.2	2307.8
2204.1	DI-214 Cc 129	19.9	m	1/25 9	1120.3	1/04.5
2218.0	Cd 117m	2 26	h	1455.8	402.9	1009.8
2322.0	CU-117111 Vr 99	2.30	h	1000.0	1029.1	1234.0
2391.1	Ga-72	2.04	h	190.3 630.0	834.0	2201 7
2491.0	Ga-72	14.1	h	630.0	834.0	2201.7
2507.8	Mp 56	14.1	h	030.0 946 9	1010 0	2201.7
2522.5	WIII-30 Vr 97	2.58	m	840.8 402.6	845 A	2113.1
2558 1	Kr-87	76.3	m	402.0	845.4 845.4	2554.8
2550.1	TI_202	205	m	402.0 582 7	240.4 260.6	2004.0 510 ۹
2014.5	Mn-56	3.03 2.50	h	203.2 2/6 9	1010 0	010.0 0112 1
2037.3	Na_24	2.30 17.06	h	040.0 1268 6	1010.0	2113.1
2734.0	1Va=24 (2=10	14.30 Q 70	m	1308.0 /1071 0		
3102 /	Cu +3 C_27	5.72	m	4071.5		
<u>۸</u> 071 ۵	(10	5.05 Q 70	m	202/ /		
-0/1.5		0.72		5004.4		

, , , ,, ,, ,, ,,	Table 9.	Gamma ray	s arranged b	y energy	(half-lives >	> 1	day)).
-------------------	----------	-----------	--------------	----------	---------------	-----	------	----

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
14.4	Co 57	271.9	d	177.1	126 5	
14.4	7n-72	46.5	u h	145 0	192.0	
23.9 *	Sn-119m	293.1	d	25.3		
25.5	Sn-119m	293.1	d	23.5		
25.6	Tb-161	6.9	d	74.6	48.9	
30.9	Pt-195m	4.02	d	98.9	129.7	
35.5 *	I-125	59.4	ď			
35.5 *	Te-125m	57.4	d	109.3		
39.6 *	Xe-129m	8.88	d	196.6		
39.8	Pd-103	16.99	d	357.5		
43.1	Os-194	6	у			
45.3	Eu-155	4.76	y	86.5	105.3	60.0
48.9	Tb-161	6.9	d	74.6	25.7	
49.7	Te-132	3.2	d	228.2		
53.2	Ba-133	10.51	У	356.0	81.0	302.9
57.4	Ce-143	33.0	h	293.3	664.6	721.9
57.6 *	Te-127m	109	d			
58.0 *	Dy-159	144.4	d			
59.5 *	Am-241	432.2	У			
59.7	Er-172	49.3	ĥ	407.3	610.1	446.0
60.0	Eu-155	4.76	У	86.5	105.3	45.3
61.3 *	Sm-145	340	d			
63.1	Yb-169	32.03	d	177.2	198.0	109.8
65.7	Ta-182	114.43	d	1221.4	1189.1	67.8
66.7 *	Tm-171	1.92	у			
67.8	Ta-182	114.43	d	1221.4	1189.1	1121.3
68.1	Er-172	49.3	h	407.3	610.1	446.0
69.7	Gd-153	240.4	d	97.4	103.2	
69.7	Sm-153	46.28	h	103.2		
73.0	Os-193	30.1	h	460.6	138.9	
74.6 *	Tb-161	6.9	d	25.7	48.9	
75.4	Pa-233	27.0	d	312.2	300.3	340.8
77.4 *	Hg-197	64.14	h			
78.7	Tm-172	128.6	d	181.5	1093.7	1387.1
79.6	Ba-133	10.51	У	356.0	81.0	302.9
80.2	I-131	8.02	d	364.5	637.0	284.3
80.6 *	Ho-166	26.83	h	1379.4		
80.6	Ho-166m	1200	У	184.4	184.4	711.7
81.0	Ba-133	10.51	У	356.0	302.9	276.4
81.0 *	Xe-133	5.24	d			
82.4	Pt-191	2.8	d	538.9	409.4	359.9
82.5 *	Dy-166	81.6	h			
84.3 *	Tm-170	128.6	d			
84.7	Ta-182	114.43	d	1221.4	1189.1	67.8
86.5 *	Eu-155	4.76	У	105.3	60.0	45.3
86.8	Pa-233	27.0	d	312.2	300.3	340.8
86.8	Tb-160	72.3	d	879.4	966.2	298.6
88.0 *	Cd-109	462.6	d			
91.1	Nd-147	10.98	d	531.0	319.4	439.9
91.3	Cu-67	61.8	h	184.6	93.3	300.2
93.3	Cu-67	61.8	h	184.6	91.3	300.2
96.5	Pt-191	2.8	d	538.9	409.4	359.9
96.7	Se-75	119.78	d	264.7	136.0	279.5
97.4 *	Gd-153	240.4	d	103.2	69.7	
98.9 *	Pt-195m	4.02	d	129.7	30.9	
100.0	Pm-151	28.4	h	340.1	167.8	275.2
100.1	Ta-182	114.43	d	1221.4	1189.1	67.8
102.1	Te-131m	30	h	773.7	852.2	793.8

, , , ,, ,, ,, ,,	Table 9.	Gamma ray	s arranged b	y energy	(half-lives >	> 1	day)).
-------------------	----------	-----------	--------------	----------	---------------	-----	------	----

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
103.2	Gd-153	240.4	d	97.4	69.7	
103.2 *	Sm-153	46.28	n	69.7		
104.0	Pa-233	27.0	a	312.2	300.3	340.8
104.8	Pm-151	28.4	n	340.1	167.8	275.2
105.3	EU-155	4.76	y d	86.5	60.0 228 F	45.3
105.4	LU-1//M	160.4	d	208.4	228.5	378.5
105.5	Np 220	22.0	u d	2776		200.8
100.1	NP-259 To 192	2.50	u d	277.0	220.2	209.0
107.9	10-102	J.I 7 10E 109	u	240.1	142.0	101.5
109.2	0-235 Te-125m	7.10L+08	y d	25 5	145.8	103.4
109.5	Yh-169	32.03	d	177.2	198 0	307 7
105.0	10 105	6 73	d	208.4	2/9 7	307.7
113.0	Lu-177m	160 /	d	200.4	240.7	378 5
113.0	Ta-182	114 43	d	1200.4	1189 1	67.8
113.8	Yb-175	4.19	d	396.3	282.5	
116.4	Ta-182	114.43	d	1221.4	1189.1	67.8
121.1	Se-75	119.78	ď	264.7	136.0	279.5
121.8	Fu-152	13.54	v	1408.0	344.3	778.9
122.1 *	Co-57	271.8	, d	136.5	14.4	
122.3	Re-186	90.64	h	137.2		
123.1	Eu-154	8.59	v	1274.4	723.3	1004.7
123.8	Ba-131	11.50	, d	496.3	216.1	373.3
125.4 *	W-185	75.1	d			
127.8	Er-172	49.3	h	407.3	610.1	446.0
128.5	Lu-177m	160.4	d	208.4	228.5	378.5
129.1	Th-232(Ac-228)	1.40E+10	y	911.2	338.3	969.0
129.4 *	Os-191	15.4	d			
129.4	Pt-191	2.8	d	538.9	409.4	359.9
129.7	Pt-195m	4.02	d	98.9	30.9	
130.5	Yb-169	32.03	d	177.2	198.0	109.8
133.0	Hf-181	42.39	d	482.2	345.9	136.3
133.5 *	Ce-144	284.9	d			
133.6	Ba-131	11.50	d	496.3	123.8	216.1
136.0	Se-75	119.78	d	264.7	279.5	400.7
136.3	Hf-181	42.39	d	482.2	133.0	345.9
136.3 *	W-181	121.2	d	152.3		
136.5	Co-57	271.8	d	122.1	14.4	
137.2	Re-186	90.64	h	122.3		
138.9	Os-193	30.1	h	460.6	73.0	280.5
140.5	Mo-99	65.9	h	739.6	181.1	777.9
142.6	Fe-59	44.5	d	1099.3	1291.6	192.4
143.8	U-235	7.10E+08	У	185.7	163.4	205.3
144.1	Ta-183	5.1	d	246.1	354.0	107.9
145.0 *	Zn-72	46.5	h	192.0	16.4	
145.4 *	Ce-141	32.5	d			
152.3	W-181	121.2	d	136.3		
152.4	Ta-182	114.43	d	1221.4	1189.1	67.8
153.3	Lu-177m	160.4	d	208.4	228.5	378.5
156.0	Sn-117m	13.6	d	158.6		
156.4	1a-182	114.43	a	1221.4	1189.1	67.8
158.4 *	Au-199	3.14	d	208.2		
158.6 *	5n-11/m	13.6	u م	156.0		
159.0 *	1e-123m	119.7	a			
159.4 *	SC-4/	3.35	น ผ			
100.5	18-183 To 183	5.1	a d	246.1	354.0	107.9
101.5	19-792 To 165	5.1	น ผ	246.1	354.0	107.9
102.3	19-183	5.1	a	246.1	354.0	107.9

, , , ,, ,, ,, ,,	Table 9.	Gamma ray	s arranged b	y energy	(half-lives >	> 1	day)).
-------------------	----------	-----------	--------------	----------	---------------	-----	------	----

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
162.7	Ba-140	12.75	d	537.3	304.9	423.7
163.4	U-235	7.10E+08	У	185.7	143.8	205.3
163.9 *	Xe-131m	11.84	d			
165.9 *	Ce-139	137.64	d			
167.8	Pm-151	28.4	h	340.1	275.2	445.7
172.1	Xe-127	36.4	d	202.9		
172.2	Pt-191	2.8	d	538.9	409.4	359.9
174.4	Lu-177m	160.4	d	208.4	228.5	378.5
175.4	Sc-48	43.67	h	983.5	1037.6	1312.1
176.3	Sb-125	2.76	У	427.9	600.6	463.4
1/7.2	Pm-151	28.4	h	340.1	167.8	275.2
1//.2 *	Yb-169	32.03	d	198.0	307.7	109.8
1/9.4	Ta-182	114.43	d	1221.4	1189.1	67.8
181.1	Mo-99	65.9	h	/39.6	140.5	///.9
181.5	Im-1/2	63.6	h	1093.7	1387.1	1465.9
184.4 *	H0-166m	1200	У	/11./	810.3	280.5
184.6 *	Cu-67	61.8	h	93.3	91.3	300.2
185.7 *	0-235	7.10E+08	У	143.8	163.4	205.3
186.2 *	Ra-226	1600	У.			
190.3 *	In-114m	49.5	d	558.5	/25.3	
192.0	Zn-72	46.5	n	145.0	16.4	
192.4	Fe-59	44.5	d	1099.3	1291.6	142.7
196.6	Xe-129m	8.88	d	39.6		
197.0	1b-160	72.3	d	8/9.4	966.2	298.6
198.0	YD-169	32.03	d	1//.2	307.7	109.8
198.4	Ta-182	114.43	d	1221.4	1189.1	67.8
198.6	Se-75	119.78	d	264.7	136.0	279.5
200.6	Te-131m	30	n L	//3./	852.2	/93.8
202.7	EF-172	49.3	n a	407.3	610.1	446.0
202.9 *	Xe-127	30.4	a a	1/2.1	 220 F	 270 F
204.1	LU-1//m	160.4	a L	208.4	228.5	378.5
204.1	ND-95M		n	235.7	1/2 0	 162 /
205.5	U-255 Ir 102	7.1UE+U6	y Y	103.7 216 E	145.0	105.4 209 E
205.8	11-192	73.8	u d	310.5	408.1	308.5
200.2	Au-199	5.14	u d	130.4	240.7	221.2
200.4	Lu-177	0.75 160 4	u d	115.U 220 E	249.7 270 E	521.5 419 5
208.4	Th-232(Ac-228)	1 /0E±10	u v	220.J 011 2	378.3	418.5
209.2	Nn-730	2.40110	y d	277.6	238.3 228.2	106 1
209.0	Ta-183	5.1	d	277.0	354.0	100.1
200.0	Te-121m	15/	d	1102.2		107.5
212.2	Ru-97	69 1	h	324 5		
215.7	Th-160	72.3	d	879.4	966.2	298.6
215.9	Ho-166m	1200	v	184.4	810.3	711.7
216.1	Ba-131	11.50	, d	496.3	123.8	373.3
221.5	Br-82	35.3	h	776.5	554.4	619.1
222.1	Ta-182	114.43	d	1221.4	1189.1	67.8
227.1	W-188	69.4	d	290.7		
228.2	Np-239	2.36	d	277.6	106.1	106.1
228.2 *	Te-132	3.2	d	49.7		
228.5	Lu-177m	160.4	d	208.4	378.5	418.5
229.3	Ta-182	114.43	d	1221.4	1189.1	67.8
231.6	Ce-143	33.0	h	293.3	57.4	664.6
233.2 *	Xe-133m	2.19	d			
235.7 *	Nb-95m	86.6	h	204.1		
238.6 *	Th-232(Pb-212)	1.40E+10	у	300.1		
239.0 *	As-77	38.9	h			
239.6	Ba-131	11.50	d	496.3	123.8	216.1

Table 9.	Gamma rays	arranged by energy	(half-lives > 1 da	ay).
----------	------------	--------------------	--------------------	------

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
240.4	5 454	20.4		240.4	467.0	275.2
240.1	PM-151 To 121m	28.4	n h	340.1	167.8	2/5.2
240.9	11-238(Db-214)	30 4 50F±09	II V	251 0	205 1	/ 93.8
242.0	0-238(PD-214) Ta-183	4.502105	y d	246.1	107.9	354.0
242.5	Fu-152	13 54	v	1408.0	344 3	778 9
244.7	Ta-183	13.54 5 1	d	354.0	107.9	161 5
247.9	Fu-154	8.59	v	1274.4	123.1	723.3
249.4	Ba-131	11.50	, d	496.3	123.8	216.1
249.7	Lu-177	6.73	d	208.4	113.0	321.3
254.3 *	Ce-137m	34.4	ĥ			
255.1	Sn-113	115.09	d	391.7		
259.8	Ho-166m	1200	v	184.4	810.3	711.7
260.9	Cd-115	53.5	'n	527.9	336.2	492.3
263.7 *	Cd-113m	14.1	v			
264.1	Ta-182	114.43	d	1221.4	1189.1	67.8
264.7 *	Se-75	119.78	d	136.0	279.5	400.7
268.2 *	Ba-135m	28.7	h			
268.7	Pt-191	2.8	d	538.9	409.4	359.9
270.2	Th-232(Ac-228)	1.40E+10	y	911.2	338.3	969.0
275.2	Pm-151	28.4	h	340.1	167.8	445.7
275.9 *	Ba-133m	38.9	h			
276.4	Ba-133	10.51	у	356.0	81.0	302.9
277.4	Th-232(Tl-208)	1.40E+10	у	583.2	2614.5	510.8
277.6 *	Np-239	2.36	d	228.2	106.1	209.8
279.2 *	Hg-203	46.6	d			
279.5	Se-75	119.78	d	264.7	136.0	400.7
280.5	Os-193	30.1	h	460.6	138.9	73.0
280.5	Ho-166m	1200	у	184.4	810.3	711.7
281.8	Lu-177m	160.4	d	208.4	228.5	378.5
282.5	Yb-175	4.19	d	396.3	113.8	
284.3	I-131	8.02	d	364.5	637.0	80.2
286.0 *	Pm-149	53.1	h			
288.5	Pm-148m	41.3	d	550.3	630.0	725.7
290.7 *	W-188	69.4	d	227.1		
291.7	Ta-183	5.1	d	246.1	354.0	107.9
293.3 *	Ce-143	33.0	h	57.4	664.6	721.9
295.2	U-238(Pb-214)	4.50E+09	У	351.9	241.9	
296.0	lr-192	73.8	d	316.5	468.1	308.5
298.6	Tb-160	72.3	d	879.4	966.2	1178.0
300.1	Th-232(Pb-212)	1.40E+10	У	238.6		
300.2	Cu-67	61.8	h	184.6	93.3	91.3
300.3		27.0	a	312.2	340.8	415.8
300.8	H0-166M	1200	У	184.4	810.3	/11./
302.9	Ba-133	10.51	y	356.0	81.0	276.4
303.9	Se-75	119.78	a	264.7	136.0	2/9.5
304.9	Ba-140	12.75	a h	537.3	162.7	423.7
300.3	RII-103	35.4	1) d	319.1	108.0	100.9
307.7 209 E	fD-109	52.05 72.0	u d	1/7.Z 216 E	198.0	109.8
211.6	II-192 Dm 149m	/5.0	u d	510.5	400.1	290.0
212.0	Pa-233	41.3	u d	300.3	340.8	/25./
312.2	ra-233 Ta-182	۲.U ۲ 1	d	500.5 216 1	251 D	413.0
215 0	10-103 Nn-720	5.I 7.26	u d	240.1 วาง ว	304.U 106 1	200 0
313.3 216 E *	18µ-253 r_102	2.30	u d	220.2 160 1	200.1 200.1	203.8
210.0	11-132 Ju-177m	75.8 160 4	d d	400.1 202 1	300.3 278 5	290.U 270 E
319.0	Rh-105	25 /	h	200.4 206 2	220.J	576.5
210 /	NI-105	35.4 ۱۸ ۵۵	Ы	500.5 521 A	 01 1	130 0
319.4	nu-1+/ (r-21	20.30	d		51.1	433.9
520.1		27.7	u			

, , , ,, ,, ,, ,,	Table 9.	Gamma ray	s arranged b	y energy	(half-lives >	> 1	day)).
-------------------	----------	-----------	--------------	----------	---------------	-----	------	----

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
221 2	1 177	6 72	А	209.4	112.0	240.7
321.5	Os-193	30.1	u h	208.4 460.6	138.9	73.0
321.0	803 195 Ru-97	69.1	h	215 7		
324.5	Lu-177m	160.4	h	213.7	228 5	378 5
328.0	Th-232(Ac-228)	1.40F+10	v	911.2	338.3	969.0
328.5	Ir-194m2	171	, d	338.8	482.8	562.6
328.8	La-140	40.27	ĥ	1596.2	487.0	867.9
332.1	Sn-125	9.64	d	1067.1	1089.2	822.5
333.0	Au-196	6.18	d	355.7	426.0	
334.3	Np-239	2.36	d	277.6	228.2	209.8
334.3	Te-131m	30	h	773.7	852.2	793.8
336.2	Cd-115	53.5	h	527.9	492.3	260.9
338.3	Th-232(Ac-228)	1.40E+10	у	911.2	338.3	969.0
338.8 *	lr-194m2	171	d	328.5	482.8	562.6
340.1 *	Pm-151	28.4	h	167.8	275.2	445.7
340.8	Pa-233	27.0	d	312.2	300.3	415.8
343.4 *	Hf-175	70	d	433.0		
344.3	Eu-152	13.54	У	1408.0	778.9	121.8
344.9	Pm-151	28.4	ĥ	340.1	167.8	275.2
345.9	Hf-181	42.39	d	482.2	133.0	136.3
350.6	Ce-143	33.0	h	293.3	57.4	664.6
351.2	Pt-191	2.8	d	538.9	409.4	359.9
351.9 *	U-238(Pb-214)	4.50E+09	v	295.1	241.9	
354.0	Ta-183	5.1	d	246.1	107.9	161.5
355.7 *	Au-196	6.18	d	333.0	426.0	
356.0 *	Ba-133	10.51	v	81.0	302.9	276.4
357.5	Pd-103	16.99	d	39.8		
359.9	Pt-191	2.8	d	538.9	409.4	82.4
364.5 *	I-131	8.02	d	637.0	284.3	80.2
365.8	Ho-166m	1200	У	184.4	810.3	711.7
366.4	Mo-99	65.9	ĥ	739.6	140.5	181.1
371.8	Dy-166	81.6	h	82.5	426.0	
373.3	Ba-131	11.50	d	496.3	123.8	216.1
378.5	Lu-177m	160.4	d	208.4	228.5	418.5
380.5	Sb-125	2.76	у	427.9	600.6	636.0
383.5	Er-172	49.3	h	407.3	610.1	446.0
383.9	Ba-133	10.51	У	356.0	81.0	302.9
387.5	Os-193	30.1	h	460.6	138.9	73.0
390.8	lr-194m2	171	d	338.8	328.5	482.8
391.7 *	Sn-113	115.09	d	255.1		
392.5	Tb-160	72.3	d	879.4	966.2	298.6
396.3 *	Yb-175	4.19	d	282.5	113.8	
398.2	Nd-147	10.98	d	91.1	531.0	319.4
398.6	Pa-233	27.0	d	312.2	300.3	340.8
400.7	Se-75	119.78	d	264.7	136.0	279.5
404.1	Ba-131	11.50	d	496.3	123.8	216.1
407.3 *	Er-172	49.3	h	610.1	446.0	68.1
409.4	Pt-191	2.8	d	538.9	359.9	82.4
409.5	Th-232(Ac-228)	1.40E+10	у	911.2	338.3	969.0
410.9	Ho-166m	1200	у	184.4	810.3	711.7
411.1	Eu-152	13.54	у	1408.0	344.3	778.9
411.8 *	Au-198	2.70	d	675.9	1087.7	
413.7	Lu-177m	160.4	d	208.4	228.5	378.5
414.0	Pm-148m	41.3	d	550.3	630.0	725.7
415.8	Pa-233	27.0	d	312.2	300.3	340.8
418.5	Lu-177m	160.4	d	208.4	228.5	378.5
423.7	Ba-140	12.75	d	537.3	162.7	304.9
426.0	Au-196	6.18	d	355.7	333.0	

Table 9.	Gamma rays	arranged by energy	(half-lives > 1 da	ay).
----------	------------	--------------------	--------------------	------

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
426.0	D:: 100	01.0	h	00 F	271.0	
420.U 177 Q *	Dy-100 Sh-125	81.0	n v	82.5 600.6	371.8	636.0
427.5	50-125 La-140	2.70	y h	1596.2	403.4	278.8
432.5	Pm-1/18m	40.27	d	550.2	487.0 630.0	725.7
432.7	Hf-175	41:5 70	d	343.4		
437.6	Ba-140	12 75	d	537 3	162 7	304 9
439.9	Nd-147	10.98	d	531.0	91.1	319.4
443.8	Ru-103	39.3	ď	497.1	610.3	
443.9	Fu-152	13.54	v	1408.0	344.3	778.9
445.7	Pm-151	28.4	, h	340.1	167.8	275.2
446.0	Er-172	49.3	h	407.3	610.1	446.0
446.8	Ag-110m	249.79	d	657.8	884.7	937.5
451.5	Ho-166m	1200	v	184.4	810.3	711.7
456.5	Pt-191	2.8	d	538.9	409.4	359.9
460.6 *	Os-193	30.1	h	138.9	73.0	280.5
463.0	Th-232(Ac-228)	1.40E+10	у	911.2	338.3	969.0
463.4	Sb-125	2.76	y y	427.9	600.6	636.0
464.8	Ho-166m	1200	y y	184.4	810.3	711.7
468.1	lr-192	73.8	d	316.5	308.5	296.0
468.6	Rh-102	207	d	475.1	555.6	628.1
469.9	Sn-125	9.64	d	1067.1	1089.2	822.5
475.1 *	Rh-102	207	d	555.6	628.1	468.6
475.4	Cs-134	2.06	v	795.9	604.7	569.3
477.6 *	Be-7	53.12	d			
482.2 *	Hf-181	42.39	d	133.0	345.9	136.3
482.8	lr-194m2	171	d	338.8	328.5	562.6
484.5	Cd-115m	44.6	d	933.8	1290.6	
484.6	lr-192	73.8	d	316.5	468.1	308.5
487.0	La-140	40.27	h	1596.2	328.8	867.9
489.2	Ca-47	4.54	d	1297.1	489.2	
490.4	Ce-143	33.0	h	293.3	57.4	664.6
492.3	Cd-115	53.5	h	527.9	336.2	260.9
496.3 *	Ba-131	11.50	d	123.8	216.1	373.3
497.1 *	Ru-103	39.3	d	443.8	610.3	
501.3	Pm-148m	41.3	d	550.3	630.0	725.7
507.6	Te-121	16.78	d	573.1		
510.8	Th-232(Tl-208)	1.40E+10	у	583.2	2614.5	860.6
511.0	Na-22	2.6	у	1274.5		
514.0 *	Sr-85	64.84	d			
527.9 *	Cd-115	53.5	h	336.2	492.3	
529.8	Ho-166m	1200	у	184.4	810.3	711.7
531.0 *	Nd-147	10.98	d	91.1	319.4	439.9
537.3 *	Ba-140	12.75	d	162.7	304.9	423.7
538.9 *	Pt-191	2.8	d	409.4	359.9	82.4
550.3	Pm-148	5.37	d	1465.1	914.8	
550.4 *	Pm-148m	41.3	d	630.0	725.7	1013.8
554.4	Br-82	35.3	h	776.5	619.1	698.4
555.6	Rh-102	207	d	475.1	628.1	468.6
557.4	Os-193	30.1	h	460.6	138.9	73.0
558.5	In-114m	49.5	d	190.3	725.3	
559.1 *	As-76	26.3	h	657.0	1216.1	1212.9
562.6	lr-194m2	171	d	338.8	328.5	482.8
563.2	As-76	26.3	h	559.1	657.0	1216.1
563.3	Cs-134	2.06	У	795.9	604.7	569.3
564.1 *	Sb-122	2.72	d	692.8		
569.3	Cs-134	2.06	У	795.9	604.7	563.3
571.0	Ho-166m	1200	У	184.4	810.3	711.7
573.1 *	Te-121	16.78	d	507.6		

Table 9.	Gamma rays	arranged by energy	(half-lives > 1 d	day).
----------	------------	--------------------	-------------------	-------

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
502.2		4 405 40		2614 5	540.0	000 0
583.Z	IN-232(11-208)	1.40E+10 72 0	y Y	2014.5	510.8	86U.6
500.0	II-192 Eu 157	75.0	u	310.5 1274 A	400.1	506.5 506.5
505.0 *	Lu-134	0.J3 17 77	y A	624.9	125.1 Ann	725.5
595.9	AS-74	11.77	u d	054.0 EEO 2	AIIII.	
599.8 COD F	PIII-148III	41.3	u a	550.3	030.0	/25./
600.5 600.6	Ir-194m2	1/1	a	338.8	328.5	482.8
600.6 CO2 7	SD-125	2.76	y d	427.9	403.4	030.0
602.7	50-124	60.2	a	1691.0	/22.8	645.9
604.4	IF-192	/3.8	a	316.5	468.1	308.5
604.7	CS-134	2.06	y h	795.9	569.3	563.3
606.3	BF-82	35.3	n 	//0.5	554.4	619.1
606.7	SD-125	2.76	У	427.9	600.6	463.4
609.3 *	U-238(BI-214)	4.50E+09	y	1120.3	1764.5	2204.1
610.1	Er-172	49.3	n	407.3		
610.3	Ru-103	39.3	d	497.1	443.8	
611.3	Pm-148m	41.3	d	550.3	630.0	/25./
611.6	Ho-166m	1200	y .	184.4	810.3	711.7
612.5	lr-192	73.8	d	316.5	468.1	308.5
619.1	Br-82	35.3	h	776.5	554.4	698.4
620.4	Ag-110m	249.79	d	657.8	884.7	937.5
624.1	Pt-191	2.8	d	538.9	409.4	359.9
628.1	Rh-102	207	d	475.1	555.6	468.6
630.0	Pm-148m	41.3	d	550.3	725.7	1013.8
634.8	As-74	17.77	d	595.9	Ann.	
636.0	Sb-125	2.76	У	427.9	600.6	463.4
637.0	I-131	8.02	d	364.5	284.3	80.2
645.9	Sb-124	60.2	d	1691.0	602.7	722.8
646.1 *	Os-185	93.6	d			
657.0	As-76	26.3	h	559.1	1216.1	1212.9
657.8 *	Ag-110m	249.79	d	884.7	937.5	1384.3
661.7 *	Cs-137	30.07	у			
664.6	Ce-143	33.0	h	293.3	57.4	721.9
670.5	Ho-166m	1200	у	184.4	810.3	711.7
671.4	Sb-125	2.76	у	427.9	600.6	636.0
675.9	Au-198	2.70	d	411.8	1087.7	
677.6	Ag-110m	249.79	d	657.8	884.7	937.5
685.9	Nd-147	10.98	d	91.1	531.0	319.4
687.0	Ag-110m	249.79	d	657.8	884.7	937.5
687.7	lr-194m2	171	d	338.8	328.5	482.8
691.3	Ho-166m	1200	у	184.4	810.3	711.7
692.4	Eu-154	8.59	у	1274.4	123.1	723.3
692.8	Sb-122	2.72	d	564.1		
695.9 *	Te-129m	33.6	d	105.5		
698.4	Br-82	35.3	h	776.5	554.4	619.1
706.7	Ag-110m	249.79	d	657.8	884.7	937.5
709.3	Sb-124	60.2	d	1691.0	602.7	722.8
711.7	Ho-166m	1200	y	184.4	810.3	280.5
713.8	Sb-124	60.2	d	1691.0	602.7	722.8
717.7	Pm-151	28.4	h	340.1	167.8	275.2
721.9	Ce-143	33.0	h	293.3	57.4	664.6
722.8	Sb-124	60.2	d	1691.0	602.7	645.9
722.9	I-131	8.02	d	364.5	637.0	284.3
723.3	Fu-154	8.59	v	1274.4	123.1	1004.7
724.2	Zr-95	64.02	ď	756.7		
725.3	In-114m	49.5	d	190.3	558.5	
725.7	Pm-148m	41 3	d	550.3	630.0	1013.8
727.3 *	Th-232(Bi-212)	1.40F+10	v	785 4	1620.7	
739.6 *	Mo-99	65.9	, h	140 S	181 1	777 9
		0015	••	2.0.0	-0-11	

, , , ,, ,, ,, ,,	Table 9.	Gamma ray	s arranged b	y energy	(half-lives >	> 1	day)).
-------------------	----------	-----------	--------------	----------	---------------	-----	------	----

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
744.2	4 - 110	240 70	.i	657.0	004 7	007 5
744.3	Ag-110m	249.79	a b	057.8	884.7	937.5
751.0	La-140 Ho-166m	40.27	II V	1990.2	487.0 810.3	520.0 711 7
752.5	7r_05	64.02	y d	724.4	810.5	/11./
756.8	Eu-154	04.02 8 50	u v	1274.Z	172.1	722.2
750.8	Δg_110m	2/10 70	d V	657.8	884 7	027 5
765.3	Th-160	72 3	d	879.4	966.2	298.6
765.8 *	Nb-95	34 98	d			
768.4	U-238(Bi-214)	4 50F+09	v	609 3	1120 3	1764 5
772 3	Th-232(Ac-228)	1 40F+10	y V	911.2	338.3	969.0
773.7 *	Te-131m	30	, h	852.2	793.8	1125.5
776.5 *	Br-82	35.3	h	554.4	619.1	698.4
777.9	Mo-99	65.9	h	739.6	140.5	181.1
778.8	Ho-166m	1200	v	184.4	810.3	711.7
778.9	Eu-152	13.54	v	1408.0	344.3	121.8
782.5	Te-131m	30	, h	773.7	852.2	793.8
785.4	Th-232(Bi-212)	1.40E+10	y	727.3	1620.7	
793.8	Te-131m	30	ĥ	773.7	852.2	1125.5
795.0	Th-232(Ac-228)	1.40E+10	v	911.2	338.3	969.0
795.9 *	Cs-134	2.06	y	604.7	569.3	563.3
802.0	Cs-134	2.06	y	795.9	604.7	569.3
807.9	Ca-47	4.54	d	1297.1	489.2	
810.3	Ho-166m	1200	У	184.4	184.4	711.7
810.8 *	Co-58	70.9	d			
815.8	La-140	40.27	h	1596.2	487.0	328.8
818.0	Ag-110m	249.79	d	657.8	884.7	937.5
822.5	Sn-125	9.64	d	1067.1	1089.2	915.6
822.8	Te-131m	30	h	773.7	852.2	793.8
827.8	Br-82	35.3	h	776.5	554.4	619.1
830.6	Ho-166m	1200	У	184.4	810.3	711.7
834.8 *	Mn-54	312.3	d			
835.7	Th-232(Ac-228)	1.40E+10	У	911.2	338.3	969.0
846.8	Co-56	77.3	d	1238.3	1771.4	1037.8
852.2	Te-131m	30	h	773.7	793.8	1125.5
860.6	Th-232(Tl-208)	1.40E+10	У	583.2	2614.5	510.8
867.4	Eu-152	13.54	У	1408.0	344.3	778.9
867.9	La-140	40.27	h	1596.2	487.0	328.8
8/3.2	Eu-154	8.59	У	12/4.4	123.1	/23.3
879.4 *	10-160	/2.3	d	966.2	298.6	11/8.0
880.5	Ce-143	33.0	n	293.3	57.4	664.6
884.7	Ag-110m	249.79	d	657.8 1120 F	937.5	1384.3
869.3	SC-40	83.79 106.65	u d	1120.5		
898.U 000.0 *	00-1 5r 90	100.05	u d	1830.1		
909.0	31-69 Th 222/Ac 228)	1 40E 10	u	220.2		064.9
911.2	Dm 149	1.40E+10 5 27	y Y	550.5	909.0 1465 1	904.0
914.0	PIII-140 Dm 149m	5.57 /11 2	u d	550.5	620.0	725 7
915.6	Sn-125	9.64	d	1067 1	1089.2	822.5
919.6	Ja-1/0	2.04 20 27	u h	1596.2	1089.2	328.8
925.0	La 140	40.27	h	1596.2	487.0	328.8
933.8 *	Cd-115m	44.6	d	1290.6	484 5	
934.0	U-238(Bi-214)	4 50F+09	v	609 3	1120 3	1764 5
934.5 *	Nb-92m	10.15	, d			
937.5	Ag-110m	249 79	d	657 8	884.7	1384 3
951.0	Ho-166m	1200	v	184.4	810.3	711 7
962.3	Tb-160	72.3	, d	879.4	966.2	298.6
964.1	Eu-152	13.54	v	1408.0	344.3	778.9
964.8	Th-232(Ac-228)	1.40E+10	, v	338.3	911.2	969.0
	- ()		,			

Table 9.	Gamma rays	arranged by energy	(half-lives > 1 da	ay).
----------	------------	--------------------	--------------------	------

Energy 1				Energy2	Energy3	Energy4
(keV)	Isotope	Half-life		(keV)	(keV)	(keV)
000 0	T I 460	70.0		070.4	200.0	4470.0
966.2	10-160 Sh 124	/2.3	d	8/9.4	298.6	11/8.0
908.2	3D-124 Th-232(Ac-228)	1 40F±10	u	228.2	002.7	722.8
977 /	Co-56	1.402110	y d	1238.3	846.8	1037.8
983 5 *	Sc-48	43 67	h	1037.6	1312 1	1057.0
996 3	50 40 Fu-154	43.07 8 59	v	1037.0	1312.1	723 3
1001.7	Ta-182	114.43	, d	1274.4	1189.1	67.8
1002.9	Tb-160	72.3	d	879.4	966.2	298.6
1004.7	Fu-154	8.59	v	1274.4	123.1	723.3
1007.6	Br-82	35.3	, h	776.5	554.4	619.1
1011.8	Ir-194m2	171	d	338.8	328.5	482.8
1013.8	Pm-148m	41.3	d	550.3	630.0	725.7
1037.6	Sc-48	43.67	h	983.5	1312.1	
1037.8	Co-56	77.3	d	1238.3	846.8	1771.4
1044.1	Br-82	35.3	h	776.5	554.4	619.1
1045.1	Sb-124	60.2	d	1691.0	602.7	722.8
1067.1 *	Sn-125	9.64	d	1089.2	822.5	915.6
1076.6 *	Rb-86	18.63	d			
1085.9	Eu-152	13.54	v	1408.0	344.3	778.9
1087.7	Au-198	2.70	d	411.8	675.9	
1088.6 *	Sn-123	129.2	d			
1089.2	Sn-125	9.64	d	1067.1	822.5	915.6
1093.7 *	Tm-172	63.6	h	1387.1	1465.9	1608.6
1099.3 *	Fe-59	44.5	d	1291.6	192.4	142.7
1102.2	Te-121m	154	d	212.2		
1103.2	Rh-102	207	d	475.1	555.6	628.1
1112.1	Eu-152	13.54	у	1408.0	344.3	778.9
1115.1	Tb-160	72.3	d	879.4	966.2	298.6
1115.6 *	Zn-65	244.3	d			
1120.3	U-238(Bi-214)	4.50E+09	У	609.3	1120.3	1764.5
1120.5	Sc-46	83.79	d	889.3		
1121.3	Ta-182	114.43	d	1221.4	1189.1	67.8
1125.5	Te-131m	30	h	773.7	852.2	793.8
1168.0	Cs-134	2.06	У	795.9	604.7	569.3
1173.2 *	Co-60	5.27	У	1332.5		
1175.1	Co-56	77.3	d	1238.3	846.8	1771.4
1178.0	Tb-160	72.3	d	879.4	966.2	298.6
1189.1	Ta-182	114.43	d	1221.4	67.8	1121.3
1199.9	Tb-160	72.3	d	879.4	966.2	298.6
1206.6	Te-131m	30	h	773.7	852.2	793.8
1212.9	As-76	26.3	h	559.1	657.0	1216.1
1213.0	Eu-152	13.54	У	1408.0	344.3	//8.9
1216.1	As-76	26.3	h	559.1	657.0	1212.9
1218.9	Sc-48	43.67	h	983.5	1037.6	1312.0
1221.4 *	Ta-182	114.43	d	1189.1	67.8	1121.3
1228.6	As-76	26.3	n	559.1	657.0	1216.1
1231.0	18-182	114.43	a	1221.4	1189.1	67.8
1238.1	0-238(BI-214)	4.50E+09	y d	609.3	1120.3	1764.5
1238.3	CO-50	114.42	a a	840.8	1//1.4	1037.8
1257.4	18-182 Th 160	114.43	u d	1221.4	1189.1	07.8
1271.J 12777 X *		/2.3	u	0/9.4 100 1	2.סספ כ ככד	298.0 1004 7
1071 C *	LU-134 Na_77	0.59 7 E	y V	123.L E11 0	725.3	1004.7
1780 7	Ta-197	2.0 11 <i>1</i> ۸۵	y d	1771 /	1100 1	 67 0
1209.2	(d-115m	114.45 11 A	d	022 Q	1109.1 /\Q/ 5	
1291.6	Fe-59	44.5	d	1099 3	107.J	142.7
1297.0	Ca-47	4 5 <i>1</i>	h	<u>1055.5</u> <u>189</u> 2	207 <i>/</i>	±¬∠./
1299.1	Fu-152	13 54	v	1408.0	344 3	778 9
		10.04	,	1,00.0	311.5	,,

Table 9.	Gamma ray	s arranged b	by energy	(half-lives >	1 day).
----------	-----------	--------------	-----------	---------------	---------

 Energy 1				Energy2	Energy3	Energy4
 (keV)	Isotope	Half-life		(keV)	(keV)	(keV)
1312.1	Sc-48	43.67	h	983.5	1037.6	
1312.1	Ib-160	/2.3	a	879.4	966.2	298.6
1317.5	Br-82	35.3	h	//6.5	554.4	619.1
1325.5	Sb-124	60.2	d	1691.0	602.7	722.8
1332.5	Co-60	5.27	У	1173.2		
1355.2	Sb-124	60.2	d	1691.0	602.7	722.8
1360.2	Co-56	77.3	d	1238.3	846.8	1771.4
1365.2	Cs-134	2.06	У	795.9	604.7	569.3
1368.2	Sb-124	60.2	d	1691.0	602.7	722.8
1377.7	U-238(Bi-214)	4.50E+09	У	609.3	1120.3	1764.5
1379.4	Ho-166	26.83	h	80.6		
1384.3	Ag-110m	249.79	d	657.8	884.7	937.5
1387.1	Tm-172	63.6	h	1093.7	1465.9	1608.6
1408.0 *	Eu-152	13.54	У	344.3	778.9	121.8
1436.6	Sb-124	60.2	d	1691.0	602.7	722.8
1460.8 *	K-40	1.28E+09	У			
1465.1 *	Pm-148	5.37	d	550.3	914.8	
1465.9	Tm-172	63.6	h	1093.7	1387.1	1608.6
1474.9	Br-82	35.3	h	776.5	554.4	619.1
1475.8	Ag-110m	249.79	d	657.8	884.7	937.5
1505.0	Ag-110m	249.79	d	657.8	884.7	937.5
1509.2	U-238(Bi-214)	4.50E+09	У	609.3	1120.3	1764.5
1529.7	Tm-172	63.6	h	1903.7	1387.1	1465.9
1562.3	Ag-110m	249.79	d	657.8	884.7	937.5
1588.2	Th-232(Ac-228)	1.40E+10	У	338.3	911.2	969.0
1596.2 *	La-140	40.27	h	487.0	328.8	867.9
1608.6	Tm-172	63.6	h	1093.7	1387.1	1465.9
1620.5	Th-232(Bi-212)	1.40E+10	У	727.3	785.4	
1630.6	Th-232(Ac-228)	1.40E+10	У	338.3	911.2	969.0
1691.0 *	Sb-124	60.2	d	602.7	722.8	645.9
1729.6	U-238(Bi-214)	4.50E+09	у	609.3	1120.3	1764.5
1764.5	U-238(Bi-214)	4.50E+09	у	609.3	1120.3	1729.6
1771.4	Co-56	77.3	d	1238.3	846.8	1037.8
1836.1 *	Y-88	106.65	d	898.0		
1847.4	U-238(Bi-214)	4.50E+09	У	609.3	1120.3	1764.5
2002.2	Sn-125	9.64	d	1067.1	1089.2	822.5
2015.2	Co-56	77.3	d	1238.3	846.8	1771.4
2034.8	Co-56	77.3	d	1238.3	846.8	1771.4
2090.9	Sb-124	60.2	d	1691.0	602.7	722.8
2204.1	U-238(Bi-214)	4.50E+09	v	609.3	1120.3	1764.5
2521.4	La-140	40.27	ĥ	1596.2	487.0	328.8
2598.5	Co-56	77.3	d	1238.3	846.8	1771.4
2614.5 *	Th-232(Tl-208)	1.40E+10	v	583.2	510.8	860.6
3009.6	Co-56	77.3	, d	1238.3	846.8	2598.5
3202.0	Co-56	77.3	d	1238.3	846.8	2598.5
3253.4	Co-56	77.3	d	1238.3	846.8	2598.5
3272.9	Co-56	77.3	d	1238.3	846.8	2598.5

		SRM-1515	SRM-1547	SRM-1566		
		Apple Leaves	Peach Leaves	Oyster	Tissue	
F 1		Certificate values	Certificate values	Certificate values	Literature values	
Eleme	nt/Units	(mean & sta. dev.)	(mean & sta. dev.)	(mean & sta. dev.)	(mean & std. dev.)	
Ag	(ppm)			0.89 ± 0.09	0.94 ± 0.11	
Al	(maa)	286 ± 9	249 ± 8		263 ± 8	
As	(ppm)	0.038 ± 0.007	0.060 ± 0.018	13.4 ± 1.9	13.0 ± 1.2	
Au	(ppm)	(0.001)				
В	(ppm)	27 ± 2	29 ± 2		7 ± 1	
Ва	(ppm)	49 ± 2	124 ± 4			
Br	(ppm)	(1.8)	(11)	(55)	53 ± 6	
Ca	(%)	1.53 ± 0.02	1.56 ± 0.02	0.15 ± 0.02	0.140 ± 0.012	
Ca	(ppm)	(0.013)	(0.026)	3.5 ± 0.4	3.43 ± 0.16	
Ce	(ppm) (%)	(3) 0.579 + 0.0023	(10)	(1.0)	(0.42)	
	(nnm)	(0.09)	(0.07)	(0.4)	0.33 ± 0.02 0.37 + 0.04	
Cr	(ppm)	(0.3)	(1)	0.69 ± 0.27	0.65 ± 0.04	
Cs	(ppm)				(0.04)	
Cu	(ppm)	5.64 ± 0.22	3.7 ± 0.4	63.0 ± 3.5	63 ± 2	
Dy	(ppm)					
Er	(ppm)					
Eu	(ppm)	(0.2)	(0.17)		0.016 ± 0.003	
F	(ppm)			(5.2)	(5.15)	
Fe	(ppm)	83 ± 5	218 ± 14	195 ± 34	195 ± 11	
Gd	(ppm)	(3)	(1)			
HI	(ppm)					
пg	(ppm)	0.044 <u>1</u> 0.004 (0 3)	0.031 <u>1</u> 0.007	(2.8)	28 ± 0.004	
ĸ	(%)	1.61 + 0.02	2.43 + 0.02	0.969 + 0.005	0.93 + 0.07	
La	(ppm)	(20)	(9)		(0.37)	
Li	(ppm)					
Lu	(ppm)					
Mg	(ppm)	2710 ± 80	4320 ± 86	1280 ± 90	1330 ± 100	
Mn	(ppm)	54 ± 3	98 ± 3	17.5 ± 1.2	17.0 ± 1.2	
Мо	(ppm)	0.094 ± 0.013	0.060 ± 0.008	< 0.2	0.14 ± 0.04	
Na	(ppm)	24.4 ± 1.2	24 ± 2	0.51 ± 300	0.495 ± 0.022	
NO Ni	(ppm)	(I/)		 1 02 ± 0 10	 1 01 ± 0 00	
D	(ppiii) (%)	0.91 ± 0.12 0.150 + 0.011	0.09 ± 0.09 0.137 + 0.010	1.05 ± 0.19	1.01 ± 0.09 0.76 ± 0.05	
Ph	(nnm)	0.133 ± 0.011 0.470 + 0.024	0.137 ± 0.010 0.87 + 0.03	(0.01) 0.48 + 0.04	0.70 ± 0.03 0.48 + 0.03	
Rb	(ppm)	10.2 ± 1.5	19.7 ± 1.2	4.45 ± 0.09	4.5 ± 0.5	
S	(%)	(0.18)	(0.2)	(0.76)	0.87 ± 0.07	
Sb	(ppm)		(0.02)		0.19 ± 0.20	
Sc	(ppm)	(0.013)	(0.04)		0.076 ± 0.008	
Se	(ppm)	0.050 ± 0.009	0.120 ± 0.009	2.1 ± 0.5	2.08 ± 0.20	
Si	(ppm)				(1100)	
Sm	(ppm)	(3)	(1)		(0.7)	
Sn	(ppm)	(< 0.2)	(< 0.2)	 10.26 ± 0.56	 101 ± 07	
JI Ta	(ppm)	25 ± 2	55 <u>±</u> 4	10.50 ± 0.50	10.1 ± 0.7	
Th	(ppm)	(0.4)	(0.1)			
Te	(ppm)					
Th	(ppm)	(0.03)	(0.05)	(0.1)	(0.052)	
Ti	(ppm)	· · · · ·			(7.32)	
ΤI	(ppm)			(< 0.005)		
Tm	(ppm)					
U	(ppm)	(0.006)	(0.015)	0.116 ± 0.006	0.121 ± 0.008	
V	(ppm)	0.26 ± 0.03	0.37 ± 0.03	2.3 ± 0.1	2.7 ± 0.2	
W	(ppm)	(0.007)				
Y Vh	(ppm)					
70 7n	(ppiii) (ppm)	(U.S) 125 + 02	(0.0∠) 179 + ∩∕	 852 + 1/	 854 + 21	
<u>-</u>	(""""	12.10 2 0.2	1, 1 0.4	552 <u>-</u> 17		

Table 10. Concentrations of elements in SRM-1515, SRM-1547 and SRM-1566.

		SRM-1566a	SRM	-15	66b	SRM-1567		SRM-1568		68	
		Oyster Tissue	Oyste	er Ti	issue	Wh	eat F	lour	Ri	ce Flo	our
		Certificate values	Certific	ate	values	Certifi	cate	values	Certif	icate	values
Eleme	nt/Units	(mean & std. dev.)	(mean &	& sto	d. dev.)	(mean	& sto	d. dev.)	(mean	& sto	d. dev.)
Ag	(ppm)	1.68 ± 0.15	0.666	±	0.009						
AĬ	(ppm)	202.5 ± 12.5	197.2	±	6.0						
As	(ppm)	14.0 ± 1.2	7.65	±	0.65	(0.006	5)	0.41	±	0.05
Au	(ppm)	(0.01)									
В	(ppm)		4.5	±	1.9						
Ва	(ppm)		8.6	±	0.3						
Br	(ppm)						(9)			(1)	
Ca	(ppm)	1960 ± 190	838	±	20	190	±	10	140	±	20
Cd	(ppm)	4.15 ± 0.38	2.48	±	0.08	0.032	±	0.007	0.029	±	0.004
Ce	(ppm)	(0.4)									
Cl	(ppm)	8290 ± 140	5140	±	100						
Со	(ppm)	0.57 ± 0.11	0.371	±	0.009				0.02	±	0.01
Cr	(ppm)	1.43 ± 0.46									
Cs	(ppm)	(0.02)									
Cu	(ppm)	66.3 ± 4.3	71.6	±	1.6	2.0	±	0.3	2.2	±	0.3
Dy	(ppm)										
Er	(ppm)	(0.01)									
Eu	(ppm)										
F	(ppm)	(240)									
Fe	(ppm)	539 ± 15	205.8	±	6.8	18.3	±	1.0	8.7	±	0.6
Gd	(ppm)										
Hf	(ppm)	(0.04)									
Hg	(ppm)	0.0642 ± 0.0067	0.371	±	0.0013	0.0010	±	0.0008	0.0060	±	0.0007
I	(ppm)	4.46 ± 0.42									
K	(ppm)	7900 ± 470	6520	±	90	1360	±	40	1120	±	20
La	(ppm)	(0.3)									
Li	(ppm)										
Lu	(ppm)		4005		22						
Mg	(ppm)	$1180 \pm 1/0$	1085	±	23	0.5		0.5	20.4		~ .
IVIN	(ppm)	12.3 ± 1.5	18.5	±	0.2	8.5	±	0.5	20.1	±	0.4
IVIO	(ppm)		2207		50	0.0	(0.4)	4 5	C 0	(1.6)	4 5
Na	(ppm)	4170 ± 130	3297	±	53	8.0	±	1.5	6.0	±	1.5
	(ppm)		1.04		0.00		 (0 1 0	۱			۱
	(ppm)	2.25 ± 0.44	1.04	Ŧ	0.09		(0.18)		(0.16)
P Dh	(ppm)	0230 ± 180	0 209		0.000	0.02		0.01	0.045		0.010
PU Ph	(ppm)	$0.5/1 \pm 0.014$	0.506	т +	0.009	0.02	± (1)	0.01	0.045	± (7)	0.010
κυ c	(ppiii) (ppm)	(S) 8630 ± 100	5.20	т т	140		(1)			(7)	
S Ch	(ppm)	0020 ± 190	0.011	т +	140						
Sc	(ppiii) (ppm)	(0.01)	0.011		0.002						
Se	(ppiii) (ppm)	(0.00)	2.06	+	0 15	1 1	+	0.2	0.4	+	0.1
Si	(ppiii) (ppm)	2.21 ± 0.25	2.00	÷	0.15	1.1	÷	0.2	0.4	<u> </u>	0.1
Sm	(ppm)	(0.06)									
Sn	(ppm)	(3)	0 31	+	0.008						
Sr	(ppm)	(3)	6.8	+	0.000						
Ta	(ppm)	(0.003)	0.0		0.2						
Th	(ppm)	(0.007)									
Te	(ppm)	(0.007)				(<	0.00	2)	(<	: 0 00	2)
Th	(ppm)	(0.04)	0.0367	+	0 0043	(-		-)	(-)
Ti	(ppm)		2.0007		0.0010						
TI	(ppm)										
Tm	(ppm)										
U	(ppm)	0.132 ± 0.012	0.2550	±	0.0014						
v	(ppm)	4.68 ± 0.15	0.577	±	0.023						
Ŵ	(ppm)										
Y	(ppm)										
Yb	(ppm)										
Zn	(ppm)	830 ± 57	1424	±	46	10.6	±	1.0	19.4	±	1.0

Table 11.	Concentrations	of elements in	SRM-1566a	. SRM-1566b	SRM-1567	and SRM-1568.

		SRM-1570	SRM-1570a	SRM-1571				
		Spinach Leaves	Spinach Leaves	Orchard Leaves				
		Certificate values	Certificate values	Certificate values	Literature values			
Element/Units		(mean & std. dev.)						
			· · · ·		· · · · · ·			
Ag	(ppm)				(0.32)			
AĬ	(ppm)	870 ± 50	310 ± 11		323 ± 112			
As	(ppm)	0.15 ± 0.05	0.068 ± 0.012	10 ± 2	10.7 ± 1.3			
Au	(ppm)				0.0014 ± 0.0004			
В	(ppm)	(30)	37.6 ± 1.0	33 ± 3	33 ± 3			
Ва	(ppm)			(44)	43 ± 4			
Br	(ppm)	(54)		(10)	9.5 ± 1.1			
Ca	(%)	1.35 ± 0.03	1.527 ± 0.041	2.09 ± 0.03	2.04 ± 0.12			
Cd	(ppm)	(1.5)	2.89 ± 0.07	0.11 ± 0.01	0.119 ± 0.022			
Ce	(ppm)				0.99 ± 0.12			
Cl	(ppm)			(690)	730 ± 40			
Со	(ppm)	(1.5)	0.39 ± 0.05	(0.2)	0.160 ± 0.037			
Cr	(ppm)	4.6 ± 0.3		2.6 ± 0.3	2.6 ± 0.3			
Cs	(ppm)			(0.04)	0.038 ± 0.009			
Cu	(ppm)	12 ± 2	12.2 ± 0.6	12 ± 1	12.0 ± 1.4			
Dy	(ppm)				0.082 ± 0.023			
Ēr	(ppm)				0.0297 ± 0.0015			
Eu	(ppm)	(0.02)	(0.0054)		0.024 ± 0.003			
F	(ppm)			(4)	3.9 ± 0.5			
Fe	(ppm)	550 ± 20		300 ± 20	286 ± 28			
Gd	(ppm)				0.068 ± 0.048			
Hf	(ppm)				0.030 ± 0.005			
Hg	(ppm)	0.030 ± 0.005	0.030 ± 0.003	0.155 ± 0.015	0.155 ± 0.014			
Ĩ	(ppm)			(0.17)	0.186 ± 0.018			
К	(%)	3.56 ± 0.03	2.903 ± 0.052	1.47 ± 0.03	1.44 ± 0.07			
La	(ppm)	(0.37)			1.17 ± 0.11			
Li	(ppm)			(0.6)	0.70 ± 0.15			
Lu	(ppm)				0.0051 ± 0.0025			
Mg	(%)		(0.89)	0.62 ± 0.02	0.605 ± 0.038			
Mn	(ppm)	165 ± 6	75.9 ± 1.9	91 ± 4	89 ± 5			
Мо	(ppm)			0.3 ± 0.1	0.29 ± 0.07			
Na	(ppm)		18180 ± 430	82 ± 6	89 ± 15			
Nd	(ppm)				0.51 ± 0.13			
Ni	(ppm)	(6)	2.14 ± 0.10	1.3 ± 0.2	1.3 ± 0.2			
Р	(%)	0.55 ± 0.02	0.518 ± 0.011	0.21 ± 0.01	0.200 ± 0.018			
Pb	(ppm)	1.2 ± 0.2	(0.20)	45 ± 3	44 ± 3			
Rb	(ppm)	12.1 ± 0.2	(13)	12 ± 1	11.4 ± 1.2			
S	(%)		(0.46)	(0.19)	0.204 ± 0.024			
Sb	(ppm)	(0.04)		2.9 ± 0.3	2.9 ± 0.3			
Sc	(ppm)	(0.16)	(0.055)		0.063 ± 0.014			
Se	(ppm)		0.117 ± 0.009	0.08 ± 0.01	0.081 ± 0.010			
Si	(ppm)				550 ± 110			
Sm	(ppm)				0.114 ± 0.020			
Sn	(ppm)				0.29 ± 0.06			
Sr	(ppm)	87 ± 2	55.6 ± 0.8	37 ± 1	36 ± 3			
Та	(ppm)				0.008 ± 0.002			
Tb	(ppm)				0.013 ± 0.003			
Те	(ppm)			(0.01)	(0.011)			
Th	(ppm)	0.12 ± 0.03	0.048 ± 0.003	0.064 ± 0.006	0.058 ± 0.012			
Ti	(ppm)				20 ± 7			
ΤI	(ppm)	(0.03)			0.036 ± 0.003			
Tm	(ppm)	· /			0.007 ± 0.003			
U	(ppm)	0.046 ± 0.009	(0.15)	0.029 ± 0.005	0.029 ± 0.003			
V	(ppm)		0.57 ± 0.03		0.50 ± 0.11			
W	(ppm)				0.03 ± 0.02			
Y	(ppm)				(0.48)			
Yb	(ppm)				0.025 ± 0.005			
Zn	(ppm)	50 ± 2	82 ± 3	25 ± 3	25 ± 2			

Table 12. Concentrations of elements in SRM-15	70, SRIVI-1570a and SRIVI-1571.

		SRM	SRM-1573						
		Citrus	Leaves	Tomato Leaves					
	_	Certificate values	Literature values	Certificate values	Literature values				
Element/Units		(mean & std. dev.)							
	<i>,</i> ,								
Ag	(ppm)				(0.18)				
AI	(ppm)	92 ± 15	75 ± 2	(0.12)	0.1146 ± 0.0036				
As	(ppm)	3.1 ± 0.3	3.0 ± 0.3	0.27 ± 0.05	0.253 ± 0.036				
Au	(ppm)				(0.0008)				
В	(ppm)		(66.6)	(30)	33 ± 4				
Ва	(ppm)	21 ± 3	(23.5)		57 ± 9				
Br	(ppm)	(8.2)	(8.36)	(26)	21 ± 2				
Ca	(%)	3.15 ± 0.10	3.13 ± 0.04	3.00 ± 0.03	2.83 ± 0.23				
Cd	(ppm)	0.03 ± 0.01	(0.046)	(3)	2.5 ± 0.2				
Ce	(ppm)	(0.28)	(0.45)	(1.6)	1.3 ± 0.2				
Cl	(ppm)	(414)	(404)		10700 ± 300				
Со	(ppm)	(0.02)	(0.016)	(0.6)	0.525 ± 0.046				
Cr	(ppm)	0.8 ± 0.2	(1)	4.5 ± 0.5	4.0 ± 0.5				
Cs	(ppm)	(0.098)	0.093 ± 0.016		0.057 ± 0.008				
Cu	(ppm)	16.5 ± 1.0	16 ± 1	11 ± 1	11 ± 2				
Dy	(ppm)				(0.068)				
Er	(ppm)		(0.022)		(0.051)				
Eu	(ppm)	(0.01)	(0.0135)	(0.04)	0.022 ± 0.006				
F	(ppm)		(40)		5.5 ± 0.4				
Fe	(ppm)	90 ± 10	101 ± 6	690 ± 25	580 ± 110				
Gd	(ppm)				(0.075)				
Hf	(ppm)				(0.25)				
Hg	(ppm)	0.08 ± 0.02	0.081 ± 0.003	(0.1)	0.103 ± 0.022				
Ĭ	(ppm)	1.84 ± 0.03	(1.46)		0.323 ± 0.058				
К	(%)	1.82 ± 0.06	1.83 ± 0.04	4.46 ± 0.03	4.44 ± 0.24				
La	(ppm)	(0.19)	(0.198)	(0.9)	0.71 ± 0.07				
Li	(maa)				0.0093 ± 0.0025				
Lu	(ppm)								
Mg	(%)	0.58 ± 0.03	0.560 ± 0.007	(0.70)	0.685 ± 0.033				
Mn	(maa)	23 ± 2	22.9 ± 1.4	238 ± 7	224 ± 13				
Мо	(ppm)	0.17 ± 0.09	(0.152)		0.53 ± 0.09				
Na	(maa)	160 ± 20	163 ± 1		470 ± 110				
Nd	(mag)				0.62 ± 0.07				
Ni	(ppm)	0.6 ± 0.3	(0.715)		1.3 ± 0.2				
P	(%)	0.13 + 0.02	0.131 + 0.002	0.34 + 0.02	0.337 + 0.022				
Pb	(nnm)	13.3 + 2.4	(13.4)	6.3 + 0.3	5.9 + 0.8				
Rb	(ppm)	4.84 + 0.06	()	16.5 + 0.1	17.3 + 2.5				
S	(%)	0.407 + 0.009	0 408 + 0 018		0.62 + 0.04				
Sb	(nom)	(0.04)	(0.034)		0.036 + 0.007				
Sc	(ppm)	(0.01)	0.0104 + 0.0005	(0.13)	0.173 + 0.026				
Se	(ppm)	(0.025)			0.054 + 0.006				
Si	(%)		(0.19)		(0.30)				
Sm	(nnm)	(0.052)	(0.05)		0.092 + 0.016				
Sn	(nnm)	(0.24)	(0.03)						
Sr	(ppm)	100 + 2	98 + 3	449 + 03	42 + 5				
Ta	(ppiii) (nnm)	100 ± 2	 		(0.43)				
Th	(ppm)				0.009 + 0.005				
Te	(ppiii) (nnm)	(0.02)			0.005 ± 0.005				
Th	(ppm)	(0.02)		0.17 + 0.03	(0,205)				
Ti	(ppm)		(22)	0.17 ± 0.03	56 + 20				
TI	(ppm)	(< 0.01)	(<u></u>)	(0.05)					
Tm	(nnm)	(< 0.01)		(0.05)					
11	(ppiii) (nnm)	< 0.15	0.040 + 0.002	0.061 + 0.003	0.059 + 0.006				
v	(nnm)		(∩ 24)		12 + 0.000				
٧	(ppiii) (pnm)		(0.24)		1.2 ± 0.2 2 0 0/				
V	(ppiii) (ppm)				< 0.0 4				
Yh	(ppiii) (nnm)				0.063 + 0.016				
7n	(ppiii) (ppm)	29 + 2	200 + 1/	62 + 6	61 + 1				
211	(6611)	23 ± 2	23.3 ± 1.4	02 1 0	01 <u>4</u>				

Table 13. Concentrations of elements in SRM-1572 and SRM-1573.

		SRM	SRM-1577a	SRM-1577b			
		Bovir	Bovine Liver	Bovine Liver			
		Certificate values	Literature values	Certificate values	Certificate values		
Element/Units		(mean & std. dev.)	(mean & std. dev.)	(mean & std. dev.)	(mean & std. dev.)		
Ag	(ppm)	(0.06)	0.062 ± 0.013	0.04 ± 0.01	0.039 ± 0.007		
A	(ppm)		0.7 ± 0.2	(2)	(3)		
As	(ppm)	0.055 ± 0.005	0.055 ± 0.006	0.047 ± 0.006	(0.05)		
Au	(ppm)		0.0028 ± 0.0030		/		
В	(ppm)		2.9 ± 0.8				
Ва	(ppm)		0.94 ± 1.1				
Br	(ppm)		9.1 ± 0.9	(9)	(9.7)		
Ca	(ppm)	124 ± 6	122 ± 14	120 ± 7	116 ± 4		
Cd	(ppm)	0.27 ± 0.04	0.281 ± 0.021	0.44 ± 0.06	0.50 ± 0.03		
Ce	(ppm)		0.020 ± 0.004				
Cl	(%)	(0.27)	0.268 ± 0.014	0.28 ± 0.01	0.278 ± 0.010		
Со	(ppm)	(0.18)	0.23 ± 0.04	0.21 ± 0.05	(0.25)		
Cr	(ppm)	0.088 ± 0.012	0.116 ± 0.052				
Cs	(ppm)		0.017 ± 0.007				
Cu	(ppm)	193 ± 10	190 ± 9	158 ± 7	160 ± 8		
Dy	(ppm)		(0.0029)				
Er	(ppm)						
Eu	(ppm)		0.0003 ± 6E-05				
F	(ppm)		(0.08)				
Fe	(ppm)	268 ± 8	265 ± 18	194 ± 20	184 ± 15		
Ga	(ppm)						
Hf	(ppm)		(0.00415)				
Hg	(ppm)	0.016 ± 0.002	0.0164 ± 0.0016	0.004 ± 0.002	(0.003)		
I	(ppm)	(0.18)	0.234 ± 0.031				
К	(%)	0.97 ± 0.06	0.98 ± 0.06	0.996 ± 0.007	0.994 ± 0.002		
La	(ppm)		0.016 ± 0.004				
Li	(ppm)						
Lu	(ppm)						
Mg	(ppm)	604 ± 9		600 ± 15	601 ± 28		
Mn	(ppm)	10.3 ± 1.0		9.9 ± 0.8	10.5 ± 1.7		
Mo	(ppm)	(3.4)	3.2 ± 0.4	3.5 ± 0.5	3.5 ± 0.3		
Na	(%)	0.243 ± 0.013	0.2395 ± 0.0200	0.243 ± 0.013	0.242 ± 0.006		
Nd	(ppm)		0.014 ± 0.004				
	(ppm)						
P	(%) (mmm)			1.11 ± 0.04	1.10 ± 0.03		
PD Dh	(ppm)	0.34 ± 0.08		0.135 ± 0.015	0.129 ± 0.004		
KD C	(ppm)	18.3 ± 1.0		12.5 ± 0.1	13.7 ± 1.1		
3 5 h	(ppm)		7900 ± 1000	/000 ± 100	/850 ± 60		
30 Sc	(ppiii) (ppm)	(0.003)	0.0090 ± 0.0047	(0.003)	(0.003)		
So	(ppiii) (ppm)	11 + 01	1.09 ± 0.0003	0.71 + 0.07	0.73 + 0.06		
Si	(ppiii) (ppm)	(17)	1.05 ± 0.08 175 + 13	0.71 ± 0.07	0.75 ± 0.00		
Sm	(ppiii) (ppm)	(17)	0.0016 ± 0.0003				
Sn	(ppiii) (nnm)		0.018 ± 0.0005				
Sr	(ppiii) (nnm)	(0.14)	0.010 ± 0.000	0 138 + 0 003	0 1 3 6 + 0 0 0 1		
Ta	(nnm)	(0:14)	(0.003)	0.130 ± 0.003			
Th	(nnm)		0.0008 + 0.001				
Te	(nnm)		0.001				
Th	(nnm)		(0.03)				
Ti	(pnm)	0.05)					
TI	(ppm)			(0.003)			
Tm	(pnm)						
 U	(ppm)	(0.0008)	(0.001)	0.0007 + 3F-05			
v	(ppm)		0.058 ± 0.008	0.099 ± 0.008	(0.123)		
Ŵ	(ppm)		0.008 ± 0.005				
Ŷ	(ppm)		<1				
Yb	(ppm)		0.0004 ± 0.0001				
Zn	(ppm)	130 ± 13	130 ± 7	123 ± 8	127 ± 16		
	,						

Table 14. Concentrations of elements in SRM-1577, SRM-1577a and SRM-1577b.

		9	SRM-1d			SRM-97b			SRM-98b		
		Li	Limestone			Flint Clay			Plastic Clay		
		Certif	Certificate values			Certificate values			Certificate values		
Element/Units		(mear	(mean & std. dev.)			(mean & std. dev.)			(mean & std. dev.)		
Al	(%)	0.278	±	0.007	20.76	±	0.15	14.3	±	0.2	
As	(ppm)										
Ва	(ppm)	30	±	10		(180)			(700)		
Ca	(%)	37.8	±	0.1	0.0249	±	0.0026	0.0759	±	0.0035	
Cd	(ppm)		(0.3)								
Ce	(ppm)		(4)								
Cl	(ppm)		(130)								
Со	(ppm)					(3.8)			(16.3)		
Cr	(ppm)	8	±	2	227	÷,	12	119	t, '	5	
Cs	(ppm)	-	(0.4)			(3.4)		_	(16.5)	-	
Dv	(ppm)		(0.6)								
Er	(ppm)		(0.4)								
Fu	(nnm)		(0,1)			(84)			(13)		
F	(pp) (nnm)		(160)								
Fe	(%)	0 223	+	0.005	0 831	+	0 008	1 18	+	0.01	
63	(nnm)	0.225	<u>+</u> (1)	0.005	0.031		0.000	1.10	<u> </u>	0.01	
Gd	(ppiii) (ppm)		(±) (0,5)								
Gu ⊔f	(ppiii) (ppm)		(0.5)			(12)			 (7 2)		
	(ppm)		(0, 1)			(13)			(7.2)		
ΠŬ	(ppm)	0 1 1 2	(0.1)	0.004	0 5 1 2		0.022	2.01		0.07	
ĸ	(%)	0.113	±	0.004	0.513	±	0.023	2.81	±	0.07	
La	(ppm)		(4)				10	245		2	
LI	(ppm)				550	±	10	215	±	3	
Lu	(ppm)										
Mg	(%)	0.182	±	0.006	0.113	±	0.002	0.358	±	0.012	
Mn	(ppm)	209	±	5	47	±	5	116	±	5	
Na	(%)	0.0081	±	0.0012	0.0492	±	0.0023	0.1496	±	0.0066	
Nb	(ppm)		(0.7)								
Nd	(ppm)		(3)								
Ni	(ppm)		(4)								
Р	(ppm)	180	±	11		(200)			(300)		
Pr	(ppm)		(0.6)								
Rb	(ppm)		(6)			(33)			(180)		
S	(ppm)	1030	±	60							
Sb	(ppm)					(2.2)			(1.6)		
Sc	(ppm)					(22)			(22)		
Si	(%)	1.91	±	0.03	19.81	±	0.04	26.65	±	0.16	
Sm	(ppm)		(0.5)								
Sn	(ppm)		(1)								
Sr	(ppm)	256	±	8	84	±	2	189	±	8	
Tb	(ppm)		(0.09)								
Th	(ppm)		(0.5)			(36)			(21)		
Ti	(%)	0.0183	±	0.0039	1.43	±	0.04	0.809	±	0.012	
U	(ppm)		(1)					·			
V	(ppm)		(10)								
Ŷ	(ppm)		(5)								
Yh	(ppm)		(0.3)								
7n	(nnm)	18	+	2		(87)			(110)		
211 7r	(nnm)	10	<u>~</u> 	~		(500)			(220)		
-1	(PPIII)					(300)			(220)		

Table 15. Concentrations of elements in SRM-1d, SRM-97b and SRM98b.

		SRM-278		S	SRM-679			SRM-688			
		Obsidian Rock			В	Brick Clay			Basalt Rock		
		Certi	Certificate values			Certificate values			Certificate values		
Element/Units		(mean & std. dev.)			(meai	(mean & std. dev.)			(mean & std. dev.)		
				,	•			•		,	
Al	(%)	7.49	±	0.08	11.01	±	0.34	9.19	±	0.05	
В	(ppm)		(25)								
Ва	(ppm)		(1140)		432.2	±	9.8		(200)		
Br	(mgg)										
Са	(%)	0.702	±	0.001	0.1628	±	0.0013		(8.7)		
Ce	(ppm)		(62.2)			(105)			(13.3)		
Cl	(ppm)					()					
Со	(maa)		(1.5)			(26)			(49.7)		
Cr	(ppm)		(6.1)		109.7	+	4.9	332	+	9	
Cs	(ppm)		(5.5)			(9.6)				•	
Cu	(ppm)	5.9	+	0.2					(96)		
Dv	(ppm)										
-, Fr	(ppm)								(1.07)		
Eu	(ppm)		(0 84)			(19)			(200)		
Fe	(%)	1 43	(0.0.1)	0.01	9 05	+	0.21	7 23	(200)	0.03	
Ga	(nnm)	1.10		0.01	5105		0.21	7.20		0.00	
Gd	(ppm) (nnm)		(53)								
нf	(pp) (nnm)		(8.4)			(4 6)			(1.6)		
Ho	(ppm) (nnm)								(1.0)		
ĸ	(%)	3 45	+	0.02	2 433	+	0 047	0 155	+	0.007	
la	(nnm)	5.45		0.02	2.455		0.047	0.155		0.007	
Li	(ppiii) (nnm)				71 7	+	6.2				
Lu Lu	(ppiii) (ppm)		(0 73)		/1./	<u> </u>	0.2		(0 34)		
Μσ	(%)		(0.73) (0.14)		0 7552	+	0 0088		(5.1)		
Mn	(nnm)	400	(0.14)	15	0.7552	- (1730)	0.0000	1290	(3.1)	20	
Na	(%)	0 350	+	0.04	0 1304	(1/30)	0 0038	2.00	+	0.02	
Nd	(nnm)	0.555	<u> </u>	0.04	0.1504	<u> </u>	0.0050	2.00	<u> </u>	0.02	
Ni	(ppiii) (ppm)	3.6	+	03					(150)		
D	(ppiii) (ppm)	160	÷ +	13		(750)		580	(150)	10	
Ph	(ppiii) (ppm)	16.4	+	0.2		(750)		3 3	+	0.2	
Rb	(ppiii) (ppm)	10.4	÷ +	0.2		(100)		1 91	+	0.2	
Sh	(ppiii) (ppm)	127.5	<u>-</u> (15)	0.5		(150)		1.51		0.01	
50	(ppiii) (ppm)		(1.5)			(22 5)			(28.1)		
Si	(%)	3/11	(J.1)	0.06	2/1 3/1	(22.5)	0 30	22.6	(38.1)	0.05	
Sm	(nnm)	54.11	∸ (5.7)	0.00	24.34	<u>+</u>	0.50	22.0	- (2 70)	0.05	
Sr	(ppiii) (ppm)	63 5	(5.7)	0.1	73 /	+	2.6	169.2	(2.75)	0.7	
Ta	(ppiii) (ppm)	05.5	.⊥ (1.2)	0.1	75.4	<u>+</u>	2.0	105.2	<u>+</u>	0.7	
Th	(ppiii) (ppm)		(1.2)						(0 118)		
Th	(ppiii) (ppm)	12 /	(1)	03		(1.1)		3300	(0.440)	200	
т;	(%)	0 1/7	- +	0.5	0 577	(14)	0 022	0 700	- -	200	
Tm	(/0) (nnm)	0.14/	<u>+</u>	0.004	0.577	<u> </u>	0.035	0.700	<u>_</u>	0.000	
111	(ppm)	1 50	+	0.04					(0 27)		
	(ppm)	4.58	<u>т</u>	0.04		(162)			(U.37) (2E0)		
v	(ppm)					(102)			(230)		
T Vh	(ppm)		 (/ E)						 (2 00)		
10 7n	(ppm)		(4.3) (EE)			(150)			(2.09) (E01		
۲۱۱ ۲۳	(ppm)		(55)			(120)			(20)		
21	(hhiii)										

Table 16. Concentrations of elements in SRM-278, SRM-679 and SRM-688.
SRM-1632		SE	SRM-1632a				SRM-1633			
			-052 al	Bitu	minous	: Coal	S. Co	al Fly /	Jsh	
		Certificate	values	Certi	ficates	values	Certi	ficate v	values	
Fleme	nt/Units	(mean & s	td. dev.)	(mea	n & std	dev.)	(mea	n & std	dev.)	
Lieme		(incur a s	ur uc rij	(incu			(incu	1 0 510	il devi,	
AI	(%)				(3.1)					
As	(ppm)	5.9 +	0.6	9.3		1.0	61	+	6	
B	(ppm)		0.0	5.5		1.0	01		Ū	
Ba	(ppm)									
Ca	(%)									
Cd	(nnm)	0 19 +	0.03	0.17	+	0.02	1 / 5	+	0.06	
Co	(ppiii) (ppm)	0.15 ±	0.05	0.17	(3U)	0.02	1.45	<u> </u>	0.00	
	(ppiii) (ppm)	(6)			(50)			(38)		
Cr	(ppiii) (ppm)	20.2 +	0.5	2/ 2	(0.0)	15	121	(50)	2	
Cr	(ppm)	20.2 1	0.5	54.5	(2 /)	1.5	131	<u>+</u>	2	
CS CU	(ppm)	 10 ±	2	16 F	(2.4)	1	170		F	
Cu	(ppiii) (ppm)	10 I	Z	10.5	Ŧ	T	120	Ξ	5	
Dy E	(ppiii) (ppm)									
Eu	(ppm)				(0.54)					
F -	(ppm)		0.00			0.00				
Fe	(%)	0.87 ±	0.03	1.11	±	0.02				
Ga	(ppm)				(8.49)					
Gd	(ppm)									
Ht	(ppm)				(1.6)					
Hg	(ppm)	0.12 ±	0.02	0.13	±	0.03	0.14	±	0.01	
Но	(ppm)									
К	(%)							(1.72)		
La	(ppm)									
Li	(ppm)									
Lu	(ppm)									
Mg	(%)									
Mn	(ppm)	40 ±	3	28	±	2	493	±	7	
Na	(%)									
Nd	(ppm)									
Ni	(ppm)	15 ±	1	19.4	±	1.0	98	±	3	
Р	(ppm)									
Pb	(ppm)	30 ±	9	12.4	±	0.6	70	±	4	
Rb	(ppm)				(31)			(112)		
S	(ppm)				(1.64)					
Sb	(ppm)				(0.58)					
Sc	(ppm)				(6.3)					
Se	(ppm)	2.9 ±	0.3	2.6	±	0.7	9.4	±	0.5	
Si	(%)	(3.2	2)							
Sm	(ppm)									
Sr	(ppm)							(1380))	
Та	(ppm)									
Tb	(ppm)									
Th	(ppm)	(3.0))	4.5	±	0.1		(24)		
Ti	(%)	(0.0)	8)	-	(0.175)		· · ·		
U	(mag)	1.4 ±	0.1	1.28	±	0.02	11.6	±	0.2	
V	(mag)	35 +	3	44	±	3	214	±	8	
Ŷ	(mag)		-			-		_	-	
Yh	(pnm)									
7n	(pnm)	37 +	4	28	+	2	210	+	20	
 7r	(pnm)			20		-	210			
	VE E/									

 Table 17. Concentrations of elements in SRM-1632, SRM-1632a and SRM-1633.

	SRM-1633a Coal Fly Ash										
		Certi	ficate v	alues	MURR values						
Eleme	nt/Units	(mear	n & std	. dev.)	(meai	n & std	. dev.)				
					•		·				
Al	(%)	14.3	±	1.0	14.08	±	0.02				
As	(ppm)	145	±	15	145	±	3				
В	(ppm)				39.2	±	1.0				
Ва	(ppm)		(1500)		1320	±	40				
Br	(ppm)				2.31	±	0.16				
Ca	(%)	1.11	±	0.01	1.11	±	0.01				
Cd	(ppm)	1.00	±	0.15	1.0	±	0.2				
Ce	(ppm)		(180)		168.3	±	1.6				
Cl	(ppm)					< 69					
Со	(mag)		(46)		44.1	±	1.0				
Cr	(ppm)	196	±,	6	193	±	5				
Cs	(mag)		(11)		10.42	±	0.23				
Cu	(mag)	118	÷,	3		(120)					
Dv	(mag)				14.6	`±	0.3				
Eu	(ppm)		(4)		3.58	+	0.07				
Fe	(%)	9.40	±	0.01	9.38	+	0.19				
Ga	(ppm)		(58)		58	+	5				
Gd	(ppm)				16.0	+	0.2				
Hf	(ppm)		(8)		7.29	+	0.22				
Hg	(ppm)	0.16	+	0.01		(0.15)	0.22				
K	(%)	1.88	+	0.06	1.89	+	0.08				
la	(nom)	2.00		0.00	79.1	+	0.8				
Lu	(ppm)				1.075	- +	0.013				
Mg	(%)	0.455	±	0.001	0.455	±	0.001				
Mn	(mgg)	179	±	8	190	±	10				
Мо	(ppm)		(29)		31.3	±	3.6				
Na	(%)	0.17	±	0.01	0.165	±	0.004				
Nd	(ppm)				75.7	±	2.0				
Ni	(ppm)	127	±	4	130	±	27				
Р	(%)				0.183	±	0.015				
Pb	(ppm)	72.4	±	0.4		(65)					
Rb	(ppm)	131	±	2	134	±	3				
S	(%)		(0.18)		0.27	±	0.01				
Sb	(ppm)	6.8	±	0.4	6.15	±	0.15				
Sc	(ppm)		(40)		38.6	±	1.1				
Se	(ppm)	10.3	±	0.6	10.3	±	0.6				
Si	(%)	22.8	±	0.8	22.8	±	0.8				
Sm	(ppm)				16.83	±	0.20				
Sr	(ppm)	830	±	30	835	±	40				
Та	(ppm)				1.93	±	0.07				
Tb	(ppm)				2.53	±	0.04				
Th	(ppm)	24.7	±	0.3	24.0	±	0.3				
Ti	(%)		(0.8)		0.823	±	0.039				
U	(ppm)	10.2	±	0.1	10.3	±	0.3				
V	(ppm)	297	±	6	300	±	50				
W	(ppm)				4.6	±	0.5				
Yb _	(ppm)	-		10	7.50	±	0.13				
Zn -	(ppm)	220	±	10	220	±	10				
۷r	(ppm)				340	±	30				

Table 18. Concentrations of elements in SRM-1633a Coal Fly Ash.

	SRM-1633b Coal Fly Ash											
		Certi	ficate v	alues	М	JRR va	lues					
Fleme	nt/Units	(mear	n & std.	dev.)	(mea	n & std	. dev.)					
		(incu	i a sta	act.j	(incu		i devi,					
Al	(%)	15.05	±	0.27	14.8	±	0.2					
As	(ppm)	136.2	±	2.6	132	±	5					
В	(ppm)											
Ва	(ppm)	709	±	27	683	±	47					
Br	(ppm)		(2.9)			(3)						
Ca	(%)	1 51	+	0.06	1 61	(0)	0.06					
Cd	(nnm)	0 784	+	0.006	1.01		0.00					
Ce	(ppm) (nnm)	0.704	(190)	0.000	18/	+	2.4					
	(ppm)		(150)		104	<u> </u>	2.4					
	(ppiii) (ppm)		(50)		18.6	+	0.7					
CU Cr	(ppm)	100 2	(50)	47	48.0	- -	0.7					
Cr	(ppm)	190.2	<u>+</u> (11)	4.7	10.52	- -	4					
CS CU	(ppiii)	112.0	(11)	26	10.55	Ξ	0.25					
Cu	(ppm)	112.8	т (47)	2.0	45.5		0.0					
Dy	(ppm)		(17)		15.5	±	0.3					
Eu	(ppm)		(4.1)		3.93	±	0.09					
Fe	(%)	7.78	±	0.23	7.71	±	0.12					
Ga	(ppm)											
Gd	(ppm)		(13)			(17)						
Hf	(ppm)		(6.8)		6.76	±	0.20					
Hg	(ppm)	0.141	±	0.019								
К	(%)	1.95	±	0.03	2.00	±	0.11					
La	(ppm)		(94)		85.5	±	1.3					
Lu	(ppm)		(1.2)		1.05	±	0.04					
Mg	(%)	0.482	±	0.008								
Mn	(ppm)	131.8	±	1.7	143	±	4					
Мо	(ppm)											
Na	(%)	0.201	±	0.003	0.194	±	0.036					
Nd	(ppm)		(85)		82	±	7					
Ni	(ppm)	120.6	±	1.8	116	±	35					
Р	(%)		(0.23)									
Pb	(ppm)	68.2	、 <i>,</i> ,	1.1								
Rb	(mag)		(140)		138.5	±	5.9					
S	(%)	0.2075	+	0.0011								
Sb	(nnm)		(6)		4 85	+	0.16					
Sc.	(ppm)		(41)		40.2	+	0.6					
Se	(pp) (nnm)	10.26	+	0 17	10.2	+	0.2					
Si	(%)	23 02	+	0.08	10.2		0.2					
Sm	(nnm)	25.02	(20)	0.00	18.6	+	0.7					
Sr	(ppm)	10/1	(20)	1/	1036	- +	0.7					
Л	(ppm)	1041	 (1_0)	14	1 94	- -	<i>97</i>					
Id Th	(ppm)		(1.8)		1.84	± .	0.09					
	(ppm)	25.7	(2.6)	4.2	2.73	± .	0.24					
1n 	(ppm)	25.7	±	1.3	24.4	±	0.4					
II 	(%)	0./91	±	0.014	0.73	±	0.05					
U	(ppm)	8.79	±	0.36	8.8	±	0.8					
V	(ppm)	295.7	±	3.6	300	±	5					
W	(ppm)		(5.6)			(4.6)						
Yb	(ppm)		(7.6)		7.43	±	0.34					
Zn	(ppm)		(210)		206	±	18					
Zr	(ppm)				270	±	37					

Table 19. Concentrations of elements in SRM-1633b Coal Fly Ash.

	SRM-1633c Coal Fly Ash											
		Certifi	icate v	alues	MU	RR va	lues					
Eleme	nt/Units	(mean	& std	. dev.)	(mean & std. dev.)							
	1			1								
Al	(%)	13.28	±	0.61	12.88	±	0.25					
As	(ppm)	186.2	±	3	186.3	±	2.1					
В	(ppm)											
Ва	(ppm)	1126	±	33	1077	±	34					
Br	(ppm)											
Ca	(%)	1.365	±	0.040	1.358	±	0.050					
Cd	(ppm)	0.758	±	0.005								
Ce	(ppm)		(180)		185	±	2					
Cl	(ppm)											
Со	(ppm)	42.9	±	3.5	40.1	±	0.4					
Cr	(mag)	258	±	6	247	±	2.9					
Cs	(ppm)	9.39	±	0.22	9.3	±	0.2					
Cu	(ppm)	173.7	+	6.4			•					
Dv	(nnm)	18 70	+	0.30	19.0	+	03					
Eu	(pp) (nnm)	4 67	+	0.07	4.6	+	0.1					
Εu	(%)	10/0	∸ +	0.07	4.0 10 <i>44</i>	+	0.1					
Ga	(70) (nnm)	10.45	<u> </u>	0.55	10.44	<u> </u>	0.14					
Gd	(ppiii) (ppm)											
Gu ⊔f	(ppiii) (ppm)		(6.0)		C 1C	 	0.16					
⊓i !!~	(ppiii) (ppiii)	1 005	(0.0)	0.022	0.10	Ŧ	0.10					
пg	(ppm)	1.005	± .	0.022	1 0 2 4		0.050					
ĸ	(%)	1.//3	±	0.066	1.834	±	0.056					
La	(ppm)	87.0	±	2.6	83.8	±	1.0					
Lu	(ppm)	1.32	±	0.03	1.24	±	0.06					
Mg	(%)	0.498	±	0.052								
Mn	(ppm)	240.2	±	3.4	259	±	5					
Mo	(ppm)											
Na	(%)	0.1707	±	0.0059	0.175	±	0.006					
Nd	(ppm)		(87)		90.6	±	4.6					
Ni	(ppm)	132	±	10	146	±	21					
Р	(%)	0.192	±	0.010								
Pb	(ppm)	95.2	±	2.5								
Rb	(ppm)	117.4	±	0.5	117	±	2.8					
S	(%)	0.110	±	0.019								
Sb	(ppm)	8.56	±	0.29	8.3	±	0.1					
Sc	(ppm)	37.6	±	0.6	36.9	±	0.4					
Se	(ppm)	13.9	±	0.5								
Si	(%)	21.30	±	0.57								
Sm	(ppm)		(19)		20.8	±	0.2					
Sr	(ppm)	901	±	56	966	±	79					
Та	(ppm)	1.58	±	0.03	1.7	±	0.1					
Tb	(ppm)	3.12	±	0.06	3.4	±	0.1					
Th	(mag)	23.0	±	0.4	21.6	±	0.3					
Ti	(%)	0.724	+	0.030	0.665	+	0.029					
U	(mgg)				9.1	±	0.6					
v	(ppm)	286.2	+	7.9	279	+	9					
Ŵ/	(pnm)	200.2			2,5	<u> </u>	2					
Vh	(nnm)		(77)		<u> </u>	+	01					
7n	(ppm)		(7.7)		0.0 ว//ว	÷ +	0. <u>+</u> 27					
211 7r	(ppm)				242	- +	27 22					
21	(hhiu)				220	Ţ	22					

Table 20. Concentrations of elements in SRM-1633c Coal Fly Ash.

		SF	RM-16	35	S	RM-16	45	S	RM-16	46
		Subbit	umino	ous Coal	Riv	er Sedi	ment	Estuar	ine Se	diment
		Certif	icate v	values	Certi	ficate v	values	Certi	ficate v	alues
Eleme	nt/Units	(mean	& std	l. dev.)	(mea	n & std	. dev.)	(mea	n & std	. dev.)
		•		1	,		,	•		
Al	(%)		(0.32)		2.26	±	0.04	6.25	±	0.2
As	(mgg)	0.42	±	0.15		(66)		11.6	±	1.3
В	(ppm)									
Ва	(mgg)									
Ca	(%)					(2.9)		0.83	±	0.03
Cd	(mgg)	0.03	±	0.01	10.2	±	1.5	0.36	±	0.07
Ce	(ppm)		(3.6)						(80)	
Со	(ppm)		(0.65)		10.1	±	0.6	10.5	±,	1.3
Cr	(mgg)	2.5	±	0.3	29600	±	2800	76	±	3
Cs	(ppm)								(3.7)	
Cu	(ppm)	3.6	±	0.3	109	±	19	18	±	3
Dy	(ppm)									
, Eu	(ppm)		(0.064)					(1.5)	
Fe	(%)	0.239	+	, 0.005	11.3	+	1.2	3.35	+	0.10
Ga	(ppm)		(1.05)							
Gd	(ppm)									
Hf	(ppm)		(0.29)							
Hg	(ppm)				1.1	+	0.5	0.063	+	0.012
K	(%)				1 26	+	0.05	0.000	(1 4)	0.011
la	(ppm)				1.20	(9)	0.05			
Lu	(nnm)					(0)				
Mg	(%)				0.74	+	0.02	1.09	+	0.08
Mn	(ppm)	21.4	+	1.5	785	+	97	375	+	20
Na	(%)		(0.24)	2.0	0.54	+	0.01	0.0	(2.0)	
Nd	(ppm)				0.0.1		0.01			
Ni	(ppm)	1 74	+	01	45 8	+	29	32	+	3
P	(ppm)	1.7 1		0.1	510	+	10	540	+	50
Ph	(ppm)	19	+	0.2	714	+	28	28.2	+	18
Rb	(ppm)	1.5		0.2	, 1,		20	20.2	(87)	1.0
S	(%)	0 33	+	0.03		(1 1)			(0.96)	
Sb	(ppm)	0.00	(0.14)	0.00		(51)			(0.4)	
Sc	(pp) (nnm)		(0.63)			(2)			(10.8)	
Se	(pp) (nnm)	0.9	+	03		(1 5)			(0.6)	
Si	(%)	0.5		0.5		(24)			(31)	
Sm	(nnm)					(2-+)				
Sr	(ppm) (nnm)									
Ta	(ppm) (nnm)									
Th	(ppm)									
Th	(ppm) (ppm)	0.62	+	0.04	1 62	+	0 22		(10)	
ті	(%)	0.02	- (0 02)	0.04	1.02	<u> </u>	0.22		(0 51)	
ті	(npm)				1 44	+	0.07		(0.51)	
	(nnm)	0 024	+	0.02	1 11	∸ +	0.05			
v	(npm)	5.024	∸ +	0.5	73 5	∸ +	69	۵ı	+	1
v	(nnm)	5.2	÷	0.5	23.3	÷	0.5	54	<u>~</u> 	-
Yh	(nnm)									
7n	(nnm)	17	+	05	1720	+	169	122	+	6
2.1 7r	(npm)	т./	<u>~</u> 	0.0	1,20	<u>~</u> 	100	100	<u> </u>	
	1000									

		SI	SRM-2709						
		Buffa	lo Rive	r Sed.	Sa	n .	loaquir	n Soil	
		Certi	ficate v	alues	Ce	ficate v	alues		
Eleme	nt/Units	(mear	n & std	. dev.)	(m	ear	n & std	. dev.)	
Ag	(ppm)				0.4	11	±	0.03	
Al	(%)	6.11	±	0.16	7.5	50	±	0.06	
As	(ppm)	23.4	±	0.8	17	.7		0.8	
Au	(ppm)						(0.3)		
Ba	(ppm)	414	±	12	96	58	±	40	
Ca	(%)	2.60	±	0.03	1.8	39	±	0.05	
Cd	(ppm)	3.45	± (72)	0.22	0.3	38	±	0.01	
Ce	(ppm)		(72)	0.0	40		(42)	0.7	
Co	(ppm)	14.0	±	0.6	13	.4	±	0.7	
Cr	(ppm)	135	± (C_O)	5	1:	30	± (5.2)	4	
Cs Cu	(ppm)	00.0	(6.0)	F 0	24	c	(5.3)	0.7	
Cu	(ppm)	98.6	± (C O)	5.0	34	.6	т (2 г)	0.7	
Dy	(ppm)		(0.0)				(3.5)		
Eu	(ppm)	4 1 1	(1.3)	0.10	2 1	- ^	(0.9)	0 1 1	
ге uf	(70) (nnm)	4.11	⊥ (♀∩)	0.10	5.5	50	ד (ד כ)	0.11	
пı На	(ppili) (ppm)	1 11	(8.0)	0.07	1 /	10	(5.7)	0.08	
rig V	(%)	2.00	- +	0.07	1	+U 12	- +	0.08	
12	(70) (nnm)	2.00	(29)	0.04	2.0	55	(23)	0.00	
Lα Μσ	(ppiii) (%)	1 20	(23)	0.02	1 [51	(23)	0.05	
Mn	(70) (nnm)	555	∸ +	19	53	22	∸ +	17	
Mo	(ppm)	555	<u>-</u> 	15	5.	,0	(2)	17	
Na	(%)	0.547	+	0.014	1.1	16	(_)	0.03	
Nd	(mag)	0.0.1		0.02.			(19)	0.00	
Ni	(ppm)	44.1	±	3.0	8	38	±	5	
Р	(%)	0.0998	±	0.0028	0.06	52	±	0.005	
Pb	(ppm)	161	±	17	18	.9	±	0.5	
Rb	(ppm)		(100)				(96)		
S	(%)	0.397	±	0.004	0.89	90	±	0.002	
Sb	(ppm)	3.79	±	0.15	7	.9	±	0.6	
Sc	(ppm)		(12)				(12)		
Se	(ppm)	1.12	±	0.05	1.5	57	±	0.08	
Si	(%)	29.08	±	0.13	29.6	56	±	0.23	
Sm	(ppm)		(6.7)				(3.8)		
Sr	(ppm)		(130)		23	31	±	2	
Th	(ppm)		(9.2)				(11)		
Ti	(%)	0.457	±	0.018	0.34	12	±	0.024	
U	(ppm)	3.13	±	0.13			(3)		
V	(ppm)	95	±	4	11	L2	±	5	
W	(ppm)						(2)		
Y	(ppm)						(18)		
Yb	(ppm)		(2.8)				(1.6)		
Zn	(ppm)	438	±	12	10	06	±	3	
Zr	(ppm)		(300)				(160)		

 Table 22. Concentrations of elements in SRM-2704 and SRM-2709.

		SI	RM-27	10	SRM-2711						
		Mo	ntana	Soil	Mc	ntana	 Soil				
		High		ated	Moder	Moderately Elevated					
		Trac	o Flom	onte	Tra	o Flom	onts				
		Cortil	ficato y		Certificate values						
Elomo	nt/Unita	(moor		dov)	(moo		dov)				
Eleme	nt/Units	(mear		. aev.)	(mea		. dev.)				
Δσ	(nnm)	25.2	+	15	1 63	+	0.30				
~s	(ppiii) (%)	55.5	- -	1.5	4.03	- -	0.39				
AI	(70)	0.44	<u>т</u> т	0.00	0.55	<u>т</u> т	0.09				
AS	(ppm)	020	т (О.С)	38	105	±	8				
Au	(ppm)	707	(0.6)	F 1	700	(0.03)	20				
ва	(ppm)	1.25	Ŧ	51	/20	± .	38				
Ca	(%)	1.25	±	0.03	2.88	±	0.08				
Ca	(ppm)	21.80	±	0.2	41.70	±	0.25				
Ce	(ppm)		(57)			(69)					
Co	(ppm)		(10)			(10)					
Cr	(ppm)		(39)			(47)					
Cs	(ppm)		(107)			(6.1)					
Cu	(ppm)	2950	±	130	114	±	2				
Dy	(ppm)		(5.4)			(5.6)					
Eu	(ppm)		(1)			(1.1)					
Fe	(%)	3.38	±	0.10	2.89	±	0.06				
Ga	(ppm)		(34)			(15)					
Hf	(ppm)		(3.2)			(7.3)					
Hg	(ppm)	32.6	±	1.8	6.25	±	0.19				
In	(ppm)		(5.1)			(1.1)					
К	(%)	2.11	±	0.11	2.45	±	0.08				
La	(ppm)		(34)			(40)					
Mg	(%)	0.853	±	0.042	1.05	±	0.03				
Mn	(ppm)	1.01	±	0.04	0.0638	±	0.0028				
Мо	(ppm)		(19)			(1.6)					
Na	(%)	1.14	±	0.06	1.14	±	0.03				
Nd	(ppm)		(23)			(31)					
Ni	(ppm)	14.3	±	1	20.6	±	1.1				
Р	(%)	0.106	±	0.015	0.086	±	0.007				
Pb	(mgg)	5532	±	80	1162	±	31				
Rb	(mag)		(120)			(110)					
S	(%)	0.240	±	0.006	0.042	±	0.001				
Sb	(mag)	38	+	3	19.4	+	1.8				
Sc	(ppm)		(87)	-		(9)					
Se	(ppm)				1 52	(3)	0 14				
Si	(%)	28 97	+	0 18	30.44	+	0.19				
Sm	(nnm)	20.57	(7.8)	0.10	50.44	(5.9)	0.15				
Sr	(ppm)		(330)		245	(3.5)	1				
Th	(ppm)		(12)		245	(14)	T				
т;	(ppiii) (%)	0 202	(13)	0 101	0.206	(14)	0 022				
11	(//) (nnm)	0.203	- (ว⊑\	0.101	0.500	- (2 E)	0.020				
v	(ppill)	76 6	(23)	22	on	(∠.0) ⊥	2				
V \\\/	(ppm)	/0.0	± (02)	2.5	82	エ (つ)	Э				
vv	(ppm)		(53)			(3) (35)					
Y \vi-	(ppm)		(23)			(25)					
ЧР ¬	(ppm)	co=c	(1.3)	04		(2./)	-				
Zn Zi	(ppm)	6952	±	91	350	± (222)	5				
۷r	(ppm)					(230)					

 Table 23. Concentrations of elements in SRM-2710 and SRM-2711.

Element/Units Colume a studie v. Colume a studie v. Colume a studie v. Colume a studie v. (mean & studie v.) (mean & studie v.) (mean & studie v.) Ag (ppm) 0.08 0.027 \pm 0.004 Al (pp) 0.62 \pm 0.11 0.46 \pm 0.13 Ba (ppm) 0.22 \pm 0.11 0.46 \pm 0.13 Ba (ppm) 1.23 \pm 0.10 3.7 \pm 0.8 - Ba (ppm) 1.27 \pm 0.06 - 2.66 6.93 3.53 2.03 - Ga (ppm) 1.5 \pm 1.2 1.5 1.33 1.1 1.66 2.33 2.35 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.56 2.55 2.52			AGV-1 Andesite Guano Valley	AGV-2 Andesite Guano Valley	BCR-1 Basalt Columbia Biyer	BCR-2 Basalt Columbia River			
Ag (ppm) 0.08 0.027 ± 0.04 Ai (pb) 0.62 ± 0.11 0.66 ± 0.13 7.14 ± 0.10 Bi (ppm) 0.62 ± 0.11 0.66 ± 0.13 Bi (ppm) 7.8 3.1 ± 0.3 Bi (ppm) 0.07 3.12 ± 0.08 0.127 ± 0.00 Ca (ppm) 15 ± 1.2 16 6.8 3 3.7 ± 0.8 5.3 ± 0.03 0.13 1.1 ± 1.1 ± 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Elemen	t/Units	(mean & std. dev.)						
Ag (ppm) 0.08 0.027 ± 0.040 Al (ppm) 0.88 0.64 ± 0.14 Au (ppb) 0.52 ± 0.11 0.64 ± 0.14 Ba (ppm) 7.8 3.1 ± 0.3 3.1 ± 0.3 Ba (ppm) 1230 ± 16 ± 1.6 533 ± 2.8 Co (ppm) 10 ± 3 17 ± 0.83 ± 1.6 37 ± 3 ± 2 6.5 ± 4 19 ± 1.1			, ,			(<i>)</i>			
Al (%) 9.08 \pm 0.18 8.95 \pm 0.11 7.21 \pm 0.13 7.14 \pm 0.10 As (ppb) 0.52 \pm 0.11 $$ 0.66 \pm 0.14 $$ Ba (ppm) 7.8 $$ 3.1 \pm 0.3 $$ Ba (ppm) 7.8 $$ 3.1 \pm 0.3 $$ Ba (ppm) 1230 \pm 16 1140 \pm 32 678 \pm 16 683 \pm 28 Ca (%) 3.53 \pm 0.10 $3.72 \pm$ 0.09 4.97 \pm 0.11 5.09 \pm 0.08 Cd (ppm) 0.77 $$ 0.127 \pm 0.008 $$ Ce (ppm) 67 \pm 6 68 \pm 3 53.7 \pm 0.8 53 \pm 2 Co (ppm) 10 \pm 1.2 16 \pm 1 36.3 \pm 1.6 37 \pm 3 Cr (ppm) 10 \pm 3 1.7 \pm 2 16 \pm 4 18 \pm 2 Co (ppm) 10 \pm 3.1 0.11 1.16 \pm 0.08 0.97 \pm 0.13 1.1 \pm 0.1 Cu (ppm) 60 \pm 6 \pm 0.4 3.6 \pm 0.2 6.35 \pm 0.12 $$ Ev (ppm) 1.6 \pm 0.4 3.6 \pm 0.2 6.35 \pm 0.12 $$ Ev (ppm) 1.6 \pm 0.1 1.54 \pm 0.1 1.96 \pm 0.05 2.0 \pm 0.1 Fr (ppm) 1.6 \pm 0.1 1.54 \pm 0.1 1.96 \pm 0.05 2.0 \pm 0.1 Fr (ppm) 1.6 \pm 0.1 1.54 \pm 0.1 1.96 \pm 0.05 2.0 \pm 0.1 Fr (ppm) 1.6 \pm 0.1 1.54 \pm 0.20 \pm 0.13 4.8 \pm 0.2 Gd (ppm) 5.0 \pm 0.6 4.69 \pm 0.20 4.688 \pm 0.13 4.8 \pm 0.2 Fr (ppm) 5.0 \pm 0.6 4.69 \pm 0.20 4.688 \pm 0.13 4.8 \pm 0.2 Fr (ppm) 5.0 \pm 0.6 4.69 \pm 0.20 4.688 \pm 0.13 4.8 \pm 0.2 Fr (ppm) 5.0 \pm 0.6 4.69 \pm 0.20 4.9 \pm 0.3 4.8 \pm 0.2 Fr (ppm) 5.0 \pm 0.40 4.66 \pm 0.20 4.9 \pm 0.3 4.8 \pm 0.2 Fr (ppm) 5.0 \pm 0.40 $$ 1.25 \pm 0.14 1.31 \pm 0.06 In (ppm) 0.02 $$ 1.25 \pm 0.14 1.33 \pm 0.06 In (ppm) 0.02 $$ 1.25 \pm 0.14 1.33 \pm 0.06 In (ppm) 0.27 \pm 0.03 0.25 \pm 0.01 2.51 \pm 0.02 2.48 \pm 1.7 Hg (ppm) 0.77 \pm 0.03 0.25 \pm 0.01 2.51 \pm 0.02 2.48 \pm 1.7 Hg (ppm) 0.77 \pm 0.03 0.25 \pm 0.01 2.28 \pm 0.02 2.48 \pm 1.7 Ha (ppm) 125 \pm 1.1 2.16 \pm 0.24 \pm 0.28 2.34 \pm 1.004 Ia (ppm) 2.7 \pm 0.03 0.25 \pm 1.01 1.512 \pm 0.02 2.14 \pm 0.03 2.34 \pm 1.004 Ia (ppm) 0.77 \pm 0.03 0.25 \pm 1.01 1.251 \pm 0.22 2.42 \pm 2.3 \pm 1.1 U (ppm) 0.77 \pm 0.03 0.25 \pm 1.01 1.254 \pm 0.03 2.34 \pm 1.004 Ia (ppm) 0.75 \pm 0.03 0.75 \pm 1.04 \pm 0.27 \pm 0.23 2.34 \pm 1.004 Ia (ppm) 0.75 \pm 0.03 0.77 \pm 2.21410 \pm 30 0.52 1.53 \pm 0.03 Fr 0.03 1.51 \pm 0.04 (0.61 1.55 \pm 1.84 \pm 1.7 So (pp	Ag	(ppm)	0.08		0.027 ± 0.004				
As (ppm) 0.88 0.64 ± 0.14 Ba (ppm) 7.8 3.1 ± 0.3 Ba (ppm) 1230 ± 16 1140 ± 32 67.8 ± 16 683 ± 28 Ca (%) 3.53 ± 0.10 3.72 ± 0.08 Ca (ppm) 67 ± 6 68 ± 3 53.7 ± 0.8 3 ± 2 Ca (ppm) 10 ± 3 17 ± 2 16 ± 4 18 ± 2 Ca (ppm) 1.0 ± 3 17 ± 0.1 3.65 ± 0.1 1.1 1.4 0.1 1.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Al	(%)	9.08 ± 0.18	8.95 ± 0.11	7.21 ± 0.13	7.14 ± 0.10			
All (µD) 0.22 i 0.11 0.03 i 0.13 0.13 i 0.13 0.14 B (ppm) 7.8 3 0.14 0.15 i 0.13 0.15 Ba (ppm) 7.8 0.11 0.9 4.97 i 0.11 5.09 i 0.08 Cd (ppm) 0.07 0.127 i 0.008 0.08 Cd (ppm) 10 i 1 1.2 16 i 1 36.3 i 1.6 37 i 3 Cr (ppm) 10 i 3 17 i 2 16 i 4 1 36.3 i 1.6 37 i 3 Cr (ppm) 10 i 3 17 i 2 16 i 4 1 18 i 2 Cs (ppm) 10 i 3 i 0.1 1.16 i 0.08 0.97 i 0.13 1.1 i 0.1 Cu (ppm) 60 i 6 i 53 i 4 19 i 4 19 i 4 2 Dy (ppm) 3.6 i 0.4 3.6 i 0.2 6.35 i 0.12 Fr (ppm) 1.6 i 0.1 1.54 i 0.1 1.96 i 0.09 Eu (ppm) 4.25 i 50 (440) 480 i 40 (440) Fe (%) 4.73 i 0.13 4.68 i 0.09 9.38 i 0.22 9.65 i 0.15 Ga (ppm) 5.0 i 0.6 4.669 i 0.26 6.68 i 0.13 6.8 i 0.2 Hf (ppm) 5.0 i 0.6 4.69 i 0.26 6.68 i 0.13 6.8 i 0.3 Hf (ppm) 0.02 0.4 5.08 i 0.20 4.9 i 0.3 6.8 i 0.3 Hf (ppm) 0.02 0.4 5.08 i 0.20 4.9 i 0.3 6.8 i 0.3 Hf (ppm) 0.02 0.4 5.08 i 0.20 4.9 i 0.3 6.8 i 0.3 Hf (ppm) 0.02 0.4 5.08 i 0.20 4.9 i 0.3 6.8 i 0.3 Hf (ppm) 0.02 0.4 5.08 i 0.20 4.9 i 0.3 6.8 i 0.3 Hf (ppm) 0.02 0.4 5.08 i 0.20 4.9 i 0.3 6.8 i 0.3 Hf (ppm) 0.02 0.13 2.39 i 0.09 1.40 i 0.07 1.49 i 0.04 Ha (ppm) 1.2 i 2 0.13 0.25 i 0.01 0.512 i 0.020 K (%) 2.42 i 0.31 2.39 i 0.09 1.40 i 0.07 1.49 i 0.04 Ha (ppm) 0.27 i 0.03 0.25 i 0.01 0.512 i 0.02 0.51 i 0.02 Mg (%) 0.92 i 0.06 1.08 i 0.02 2.08 i 0.10 2.16 i 0.02 Mg (%) 0.31 i 5 0 770 i 2 2 0.48 i 0.10 2.16 i 0.03 Mn (ppm) 1.2 i 2 2 (11) 1.2.9 i 0.4 2.8 i 2 Mg (%) 0.31 i 1 0.2100 i 100 1900 i 90 1520 i 60 Mo (ppm) 1.2 i 1 0.3 1.1 i 2 0 i 0.6 4.8 i 2 Mg (ppm) 1.2 i 1 1.3 i 1 3.2 i 1.3 i 4 P (ppm) 0.27 i 0.3 0.25 i 0.01 0.512 i 0.02 5.051 i 0.02 Mg (%) 0.32 i 0.06 1.08 i 0.02 2.08 i 0.10 2.16 i 0.03 Mn (ppm) 1.2 i 0.2 2.10 i 1.00 1.000 1.90 i 90 1520 i 60 Mo (ppm) 1.2 i 0.3 1.1 i 2 0.7 i 0.3 1.1 i 2 2 Fr (ppm) 0.6 i 0.0 2.100 i 1.00 1.00 i	As	(ppm)	0.88		0.64 ± 0.14				
	AU B	(ppp) (ppm)	0.02 ± 0.11 7.8		0.00 ± 0.18 31 + 03				
	Ba	(ppm)	1230 + 16	1140 + 32	678 + 16	683 + 28			
	Ca	(%)	3.53 ± 0.10	3.72 ± 0.09	4.97 ± 0.11	5.09 ± 0.08			
Ce (ppm) 67 ± 6 6 68 ± 3 53.7 ± 0.8 53 ± 2 Co (ppm) 15 ± 1.2 16 ± 1 36.3 ± 1.6 37 ± 2 Cs (ppm) 10 ± 3 17 ± 2 16 ± 4 1 18 ± 2 Cs (ppm) 60 ± 6 53 ± 4 19 ± 4 19 ± 2 Dy (ppm) 60 ± 0 1.1 1.6 ± 0.08 0.97 ± 0 13 1.1 ± 0.1 Cr (ppm) 1.3 ± 0.1 1.5 ± 0.2 6.35 ± 0.12 Er (ppm) 1.7 1.7 ± 0.1 1.66 ± 0.09 Eu (ppm) 425 ± 50 (440) Fe (%) 4.73 ± 0.1 3.46 ± 0.2 6.35 ± 0.12 2.0 ± 0.11 Fe (%) 4.73 ± 0.1 3.46 ± 0.2 6.48 ± 0.09 Eu (ppm) 5.0 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.2 Hg (ppm) 5.0 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 5.0 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 0.02 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.007 1.49 ± 0.04 Ia (ppm) 0.02 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 1.49 ± 0.04 Ia (ppm) 0.73 ± 0.30 2.55 ± 0.01 1.52 ± 0.007 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 1.49 ± 0.44 Ia (ppm) 0.74 ± 0.3 0.25 ± 0.01 1.512 ± 0.025 0.51 ± 0.20 Mg (%) 0.92 ± 0.06 1.08 ± 0.02 2.08 ± 0.10 7 1.49 ± 2.2 Uu (ppm) 0.77 ± 0.9 Ia (1) 12.9 ± 0.4 9 ± 2.2 Nd (ppm) 7.10 ± 50 7.70 ± 2.0 1.40 ± 0.3 4.8 ± 0.2 Mg (%) 3.16 ± 0.09 1.11 ± 0.09 2.43 ± 0.025 0.51 ± 0.03 Mn (ppm) 7.10 ± 50 7.70 ± 2.0 1.40 ± 0.3 2.48 ± 17 Na (%) 3.16 ± 0.09 Hz 2 t 0.2 2.48 ± 1.7 Na (%) 3.16 ± 0.09 K (%) 2.42 ± 0.3 1.11 ± 0.9 2.43 ± 0.02 0.51 ± 0.02 Mg (ppm) 3.5 ± 1 1 1.4 ± 3 Na (%) 3.16 ± 0.09 Hz 2 t 0.2 2.48 ± 1.7 Na (%) 3.16 ± 0.09 Hz 2 t 0.2 2.48 ± 0.3 Nb (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 2.8 ± 2 Ni (ppm) 3.6 ± 0.4 5.7 ± 0.3 6.58 ± 0.10 Sc (ppm) 4.3 ± 0.4 (0.6) Hz 2 t 13 Hz 2 t 0.2 2.48 ± 1.7 Na (%) 2.05 ± 0.3 2.7.7 ± 0.3 6.58 ± 0.10 Sc (ppm) 4.2 ± 1 1 13 ± 1 3.28.8 ± 1.7 Na (%) 2.05 ± 0.3 2.7.7 ± 0.3 6.58 ± 0.10 Sc (ppm) 4.3 ± 0.4 5.7 ± 0.3 6.58 ± 0.10 Sc (ppm) 4.2 ± 1 1 13 ± 1 3.28.8 ± 1.7 Na (%) 2.05 ± 0.3 0.66 ± 2.3 4.7.1 ± 0.6 4.8 ± 2 Ni (ppm) 7.6 ± 0.4 5.7 ± 0.3 6.58 ± 0.10 Sc (ppm) 4.2 ± 1 1 13 ± 1 3.28.8 ± 1.7 Na (%) 2.05 ± 0.3 0.66 ± 1.71 ± 0.6 (.54) M (ppm) 1.22 ± 0.1 0.64 ± 0.03 1.1 ± 2 S (ppm) 4.2 ± 0.1 0.64 ±	Cd	(ppm)	0.07		0.127 ± 0.008				
Co (ppm) 15 ± 1.2 16 ± 1 36.3 ± 1.6 37 ± 3 Cr (ppm) 10 ± 3 17 ± 2 16 ± 4 18 ± 2 Cs (ppm) 1.3 ± 0.1 1.16 ± 0.08 0.97 ± 0.13 1.1 ± 0.1 Dy (ppm) 60 ± 6 53 ± 4 19 ± 4 19 ± 2 Pr (ppm) 1.6 ± 0.1 1.54 ± 0.2 6.35 ± 0.02 Er (ppm) 1.6 ± 0.1 1.54 ± 0.1 3.61 ± 0.09 Er (ppm) 1.6 ± 0.1 1.54 ± 0.1 3.61 ± 0.09 Er (ppm) 1.6 ± 0.1 1.54 ± 0.2 6.35 ± 0.12 9.55 ± 0.15 Ga (ppm) 2.0 ± 3 2.0 ± 1 22 ± 2 .23 ± 2 Gd (ppm) 5.0 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 5.1 ± 0.4 5.08 ± 0.20 4.9 ± 0.3 4.8 ± 0.2 Hg (ppm) 0.02 ± 3.20 ± 1 22 ± 2 .007 Ho (ppm) 0.04 Ho (ppm) 0.73 ± 0.03 2.9 ± 0.09 1.40 ± 0.007 Ho (ppm) 1.8 ± 2 .38 ± 1 25.0 ± 0.48 2.5 ± 1 U (ppm) 1.2 ± 2 .38 ± 1 25.0 ± 0.48 2.5 ± 1 U (ppm) 0.04 Ho (ppm) 1.2 ± 2 .011 2.39 ± 0.09 1.40 ± 0.07 1.49 ± 0.04 La (ppm) 3.8 ± 2 .38 ± 1 25.0 ± 0.8 2.5 ± 1 U (ppm) 0.27 ± 0.03 0.25 ± 0.01 0.512 ± 0.005 Ho (ppm) 2.7 ± 0.03 0.25 ± 0.01 0.512 ± 0.010 2.16 ± 0.03 Mn (ppm) 2.7 ± 0.03 0.25 ± 0.01 0.512 ± 0.02 1.51 ± 0.03 Mn (ppm) 2.7 ± 0.9 1.2 ± 0.2 2.48 ± 1.7 Na (%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.08 2.34 ± 0.03 Mn (ppm) 15 15 ± 1 14 4 ± 3 Na (%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.66 3± 0.3 Nb (ppm) 15 15 ± 1 14 4 ± 3 Na (%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.66 48 ± 2 Ni (ppm) 3.5 ± 3 .30 ± 2 2.87 ± 0.6 28 ± 2 Ni (ppm) 2.7 ± 0.3 2.77 ± 0.3 6.58 ± 0.31 1.1 ± 2 Ni (ppm) 3.6 ± 5 1.3 ± 1 13.56 ± 0.31 1.1 ± 2 Ni (ppm) 3.6 ± 5 1.3 ± 1 13.56 ± 0.31 1.1 ± 2 Ni (ppm) 2.7 ± 0.3 2.77 ± 0.3 6.58 ± 0.77 6.7 ± 0.3 Nb (ppm) 1.5 1.5 ± 1 1.4 ± 3 Sr (ppm) 6.7 ± 1 6.6 ± 2.3 47.1 ± 0.6 48 ± 2 Ni (ppm) 1.6 1.9 ± 3 1.3 ± 4 Sr (ppm) 0.74 ± 0.4 5.7 ± 0.3 6.58 ± 0.77 6.7 ± 0.3 Nb (ppm) 1.5 ± 0.4 5.7 ± 0.3 6.58 ± 0.77 6.7 ± 0.3 Nb (ppm) 1.6 1.1 1.20 ± 5 0404 ± 0.60 Sr (ppm) 0.73 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Ni (%) 2.75 ± 0.3 2.77 ± 0.3 6.58 ± 0.77 6.7 ± 0.3 Nb (ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.03 Nm (ppm) 0.73 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Ni (ppm) 0.74 ± 0.1 0.5 5 Ni (ppm) 1.72 ± 0.2	Ce	(ppm)	67 ± 6	68 ± 3	53.7 ± 0.8	53 ± 2			
$ \begin{array}{c} {\rm Gr} (ppm) & 10 \ \pm \ 3 & 17 \ \pm \ 2 & 16 \ \pm \ 4 & 18 \ \pm \ 2 \\ {\rm Gs} (ppm) & 13 \ \pm \ 0.1 & 1.16 \ \pm \ 0.08 \\ {\rm (ppm)} & 60 \ \pm \ 6 & 53 \ \pm \ 4 & 19 \ \pm \ 4 \\ {\rm (19pm)} & 40 \ \pm \ 0.1 & 1.54 \ \pm \ 0.11 \\ {\rm (1133 \ 1.1 \ \pm \ 0.1 \\ {\rm (19pm)} & 1.6 \ \pm \ 0.1 \\ {\rm (1.54 \ \pm \ 0.1 \\ {\rm (1.55 \ \pm \ 0.1 \ {\rm (1.55 \ {\rm (1.55 \ {\rm (1.55 \ \pm \ 0.1 \ {\rm (1.55 $	Со	(ppm)	15 ± 1.2	16 ± 1	36.3 ± 1.6	37 ± 3			
Cs (ppm) 1.3 ± 0.1 1.16 ± 0.08 0.9 ± 0.13 1.1 ± 0.1 Cu (ppm) 60 ± 6 53 ± 4 19 ± 4 19 ± 2 Dy (ppm) 3.6 ± 0.4 3.6 ± 0.2 6.35 ± 0.12 Fr (ppm) 1.7 1.79 ± 0.11 3.61 ± 0.09 Eu (ppm) 1.6 ± 0.1 1.54 ± 0.1 1.96 ± 0.09 Fe (pm) 425 ± 50 (440) 480 ± 40 (440) Fe (%) 4.73 ± 0.13 4.68 ± 0.09 9.38 ± 0.22 9.65 ± 0.15 Ga (ppm) 5.0 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.3 Gd (ppm) 5.0 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 0.02 Ho (ppm) 0.73 ± 0.08 Ho (ppm) 0.73 ± 0.08 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 K (%) 0.92 ± 0.06 1.08 ± 0.22 Ho (ppm) 0.27 ± 0.03 0.25 ± 0.01 0.512 ± 0.42 9 ± 0.24 Lu (ppm) 12 ± 2 (11) 12.9 ± 0.4 9 ± 0.2 Mn (ppm) 2.7 ± 0.03 0.25 ± 0.01 0.512 ± 0.22 0.51 ± 0.22 Lu (ppm) 0.27 ± 0.03 0.25 ± 0.10 0.512 ± 0.24 5.5 1 1 Lu (ppm) 12 ± 0.09 3.11 ± 0.09 2.43 ± 0.02 5.5 1 ± 0.03 Mn (ppm) 7.10 ± 50 770 ± 22 1410 ± 90 1520 ± 60 Mn (ppm) 15 15 ± 1 14 ± 3 Na (%) 3.36 ± 0.09 3.11 ± 0.09 2.43 ± 0.02 2.48 ± 17 Na (%) 3.36 ± 0.09 3.11 ± 0.09 2.43 ± 0.03 1.1 ± 2.02 Ni (ppm) 16 19 ± 3 13 3 4 Ni (ppm) 16 19 ± 3 13 ± 4 Ni (ppm) 2.7 ± 0.3 2.77 ± 0.3 1.32 ± 0.23 1.5 0.50 ± 100 P (ppm) 2.7 ± 0.3 2.77 ± 0.3 1.3 ± 1 1.356 ± 0.03 1.1 ± 2 Ni (ppm) 16 1.9 ± 3 1.3 ± 1 1.356 ± 0.03 1.1 ± 2 Ni (ppm) 16 1.9 ± 3 1.3 ± 4 Ni (ppm) 16 1.9 ± 3 1.3 ± 4 Ni (ppm) 2.7 ± 0.3 2.77 ± 0.3 5.25.38 ± 0.27 ± 0.3 S (ppm) 6.7 ± 1 6.8.5 ± 1.7 3.3 ± 2 S (ppm) 6.7 ± 1.1 3.5 ± 1.3 ± 1 3.36 ± 0.7 ± 0.3 S (ppm) 0.7.5 ± 0.3 2.77 ± 0.3 5.25.38 ± 0.47 6.7 ± 0.3 S (ppm) 0.7.5 ± 0.3 2.77 ± 0.35 2.53.8 ± 0.47 6.7 ± 0.3 S (ppm) 0.72 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Fr (ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Fr (ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Fr (ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Fr (ppm) 0.72 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Fr (ppm) 0.72 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 Fr (ppm) 0.72 ± 0.1	Cr	(ppm)	10 ± 3	17 ± 2	16 ± 4	18 ± 2			
Cu (ppm) 30 ± 0 0 1 1 0 133 ± 4 13 ± 4 13 ± 4 13 ± 2 Fr (ppm) 1.6 ± 0.1 1.54 ± 0.1 3.61 ± 0.09 Fr (ppm) 1.6 ± 0.1 1.54 ± 0.1 1.96 ± 0.05 2.0 ± 0.1 Fr (ppm) 425 ± 50 (440) 480 ± 40 (440) Fr (9pm) 20 ± 3 20 ± 1 22 ± 2 2.55 ± 0.15 Ga (ppm) 20 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 5.0 ± 0.6 4.69 ± 0.26 4.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 5.0 ± 0.6 4.69 ± 0.26 4.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 0.73 ± 0.08 Hg (ppm) 0.02 Hg (ppm) 0.04 Hg (ppm) 0.04 Hg (ppm) 0.04 Hg (ppm) 0.04 Hg (ppm) 0.25 ± 0.01 2.55 ± 0.005 Hg (ppm) 0.25 ± 0.01 2.55 ± 0.005 Hg (ppm) 0.24 ± 0.3 2.5 ± 0.14 1.33 ± 0.06 In (ppm) 0.25 ± 0.01 0.512 ± 0.07 Hg (ppm) 0.24 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 1.49 ± 0.04 La (ppm) 38 ± 2 38 ± 1 25.0 ± 0.8 25 ± 1 Li (ppm) 0.27 ± 0.03 0.25 ± 0.01 0.512 ± 0.025 0.51 ± 0.02 Mg (%) 0.92 ± 0.06 1.08 ± 0.02 2.08 ± 0.10 2.16 ± 0.03 Mn (ppm) 710 ± 50 770 ± 20 1410 ± 90 1520 ± 60 Mo (ppm) 15 ± 1 1 14 ± 3 Nd (ppm) 15 ± 10 2100 ± 100 1900 ± 90 1500 ± 100 Nb (ppm) 15 15 ± 1 144 ± 3 P (ppm) 33 ± 3 30 ± 2 28.7 ± 0.68 2.34 ± 0.08 Nb (ppm) 15 15 ± 1 0.09 2.43 ± 0.08 2.34 ± 0.08 Nb (ppm) 15 15 ± 1 144 ± 3 P (ppm) 2200 ± 100 2100 ± 100 1900 ± 90 1500 ± 100 No (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.8 ± 0.3 Nb (ppm) 15 15 ± 1 143 ± 1 3.56 ± 0.01 1.1 ± 2 Pr (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.8 ± 0.3 Nb (ppm) 15 15 ± 1 13.4 4 P (ppm) 2.00 ± 100 2100 ± 100 1900 ± 90 1500 ± 100 No (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.8 ± 0.3 Nb (ppm) 15 10 2100 ± 100 1900 ± 90 1500 ± 100 No (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.7 7.3 3 ± 2 Nd (ppm) 4.3 ± 0.4 5.7 ± 0.3 5.5 3.8 ± 0.17 6.7 ± 0.3 Sn (ppm) 4.2 ± 1 13 ± 1 32.8 ± 0.7 7.7 33 ± 2 Nd (ppm) 0.90 ± 0.09 0.89 ± 0.08 0.79 ± 0.09 Fr (ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.44 H (ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.44 H (ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.44 H (ppm) 0.75 Y (ppm) 1.20 ± 3 20 ± 1 39 ± 7 37 37 ± 2 Nd (ppm) 1.20 ± 3 20 ± 1 39 ± 7 37 37 ± 2 Nd (ppm) 1.20 ± 1 1 120 ± 5 40	Cs Cu	(ppm) (ppm)	1.3 ± 0.1	1.16 ± 0.08	0.97 ± 0.13	1.1 ± 0.1			
b) (ppm) 1.0 ± 0.1 1.7 1.79 ± 0.11 3.61 ± 0.09 Eu (ppm) 1.6 ± 0.1 1.54 ± 0.1 1.96 ± 0.05 2.0 ± 0.1 F (ppm) 425 ± 50 (440) 480 ± 40 (440) Fe (%) 4.73 ± 0.13 4.68 ± 0.09 9.38 ± 0.22 9.65 ± 0.15 Ga (ppm) 5.0 ± 0.6 4.69 ± 0.26 6.68 ± 0.13 6.8 ± 0.3 Hf (ppm) 5.1 ± 0.4 5.08 ± 0.20 4.9 ± 0.3 4.8 ± 0.2 Hg (ppm) 0.73 ± 0.08 Ho (ppm) 0.73 ± 0.08 Ho (ppm) 0.73 ± 0.08 Ho (ppm) 1.7 ± 0.4 5.08 ± 0.20 4.9 ± 0.3 4.8 ± 0.2 Ho (ppm) 0.73 ± 0.08 Ho (ppm) 0.74 ± 0.03 1.239 ± 0.09 1.40 ± 0.07 1.49 ± 0.04 La (ppm) 12 ± 2 (11) 1.25 ± 0.4 9 ± 2 Lu (ppm) 0.27 ± 0.03 0.25 ± 0.01 0.512 ± 0.4 9 ± 2 Lu (ppm) 0.7 ± 0.03 0.25 ± 0.01 0.512 ± 0.04 9 ± 2 Lu (ppm) 12 ± 2 (11) 1.29 ± 0.4 9 ± 2 Lu (ppm) 12 ± 0.03 0.25 ± 0.01 0.512 ± 0.22 0.51 ± 0.02 Mn (ppm) 2.7 ± 0.03 0.25 ± 0.01 0.512 ± 0.22 0.51 ± 0.02 Mn (ppm) 12 ± 1 0.09 Na (%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.02 2.48 ± 17 Na (%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.08 2.34 ± 0.08 Nb (ppm) 15 15 ± 1 1 14 ± 3 P (ppm) 2.6 ± 0.3 1.1 ± 0.09 2.43 ± 0.02 2.48 ± 17 Na (%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.08 2.34 ± 0.08 Nb (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.88 ± 0.3 Nb (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.88 ± 0.3 Nb (ppm) 36 ± 5 13 ± 1 13.56 ± 0.03 111 ± 2 Pr (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.88 ± 0.3 Nb (ppm) 4.3 ± 0.4 (0.6) 100 1900 ± 90 1500 ± 100 Pb (ppm) 36 ± 5 13 ± 1 13.56 ± 0.03 111 ± 2 Pr (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.4 8.4 ± 2 Ni (ppm) 4.2 2.3 ± 0.4 2.1 ± 0.6 4.8 ± 2 Ni (ppm) 4.2 ± 1 13 Sr (ppm) 4.2 ± 1 13 ± 1 32.8 ± 1.7 33 ± 2 Si (%) 27.5 ± 0.3 27.7 ± 0.3 5.25.38 ± 0.07 6.7 ± 0.3 Sn (ppm) 5.9 ± 0.4 5.7 ± 0.3 5.25.38 ± 0.07 6.7 ± 0.3 Sn (ppm) 5.9 ± 0.4 5.7 ± 0.3 6.6 ± 0.13 1.33 ± 0.4 Sn (ppm) 0.90 ± 0.09 0.89 ± 0.08 0.79 ± 0.09 Fr (ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.09 1.77 ± 0.04 Th (ppm) 0.90 ± 0.03 0.63 ± 0.13 1.33 ± 0.06 (1.35 ± 0.03 Sn (ppm) 0.72 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V (ppm) 0.27 ± 0.2 1.6 ± 0.23 3.99 ± 0.08 3.5 ± 0.2 Zn (ppm) 2.2 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V (ppm) 1.22 ± 0.15 1.88 ± 0.	Dv	(ppiii) (nnm)	36 ± 04	35 ± 4 36 + 02	13 ± 4 635 + 012	19 1 2			
	Er	(ppm)	1.7	1.79 ± 0.11	3.61 ± 0.09				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Eu	(ppm)	1.6 ± 0.1	1.54 ± 0.1	1.96 ± 0.05	2.0 ± 0.1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F	(ppm)	425 ± 50	(440)	480 ± 40	(440)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe	(%)	4.73 ± 0.13	4.68 ± 0.09	9.38 ± 0.22	9.65 ± 0.15			
God (ppm) 5.0 ± 0.4 5.08 ± 0.12 6.68 ± 0.13 6.8 ± 0.3 Hg (ppm) 0.02 0.012 ± 0.007 Ho (ppm) 0.73 ± 0.04 0.022 ± 0.007 Ho (ppm) 0.73 ± 0.31 2.39 ± 0.092 ± 0.005 K (%) 2.42 ± 0.31 2.39 ± 0.092 ± 0.005 La (ppm) 3.8 ± 2 38 ± 1 25.0 ± 0.01 2.16 ± 0.02 1.40 ± 0.01 2.16 ± 0.03 Mn (ppm) 0.27 ± 0.02 1.40 ± 0.02 1.40 ± 0.02 1.40 ± 0.03 Mn (ppm) 2.7 ± 0.02 1.41 1 0.02 1.41 1 0.43 ± 0.03 1.	Ga	(ppm)	20 ± 3	20 ± 1	22 ± 2	23 ± 2			
ni (ppin) 5.1 ± 0.4 5.06 ± 0.20 4.9 ± 0.03 4.8 ± 0.12 ± 0.007 Ho (ppm) 0.73 ± 0.08 0.092 ± 0.007 K (%) 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 1.49 ± 0.04 La (ppm) 38 ± 2.39 ± 0.04 9 ± 2 11 1.29 ± 0.4 9 ± 2 1 1.04 ± 0.07 1.49 ± 0.04 Lu (ppm) 1.2 ± 2 0.11 1.29 ± 0.44 9 1 2 1.11 1.12 ± 0.02 0.51 ± 0.02 1.51 ± 1 1.44 ± 3	Gd	(ppm)	5.0 ± 0.6	4.69 ± 0.26	6.68 ± 0.13	6.8 ± 0.3			
Ho(ppm)0.73±0.081.25±0.04Ho(ppm)0.73±0.080.092±0.005K(%)2.42±0.312.39±0.091.40±0.071.49±0.04La(ppm)38±238±12.50±0.82.5±1Li(ppm)12±2(11)1.29±0.49±2Mg(%)0.92±0.061.08±0.022.08±0.102.16±0.02Mg(%)0.92±0.061.08±0.022.08±0.102.16±0.02Mg(%)0.92±0.061.08±0.022.08±0.102.16±0.02Mg(%)3.16±0.093.11±0.022.43±0.082.34±0.08Nd(ppm)1515±11.44±3Nd(ppm)33±30±22.87±0.66.8±0.08Nd(ppm)36±513±113.56±0.0311±2Nd(ppm)200±1002100±100100<	пі На	(ppm)	5.1 ± 0.4	5.08 ± 0.20	4.9 ± 0.3	4.8 ± 0.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ho	(ppm)	0.02 0.73 + 0.08		1.012 ± 0.007 1.25 + 0.14	133 + 0.06			
k $(\%)$ 2.42 ± 0.31 2.39 ± 0.09 1.40 ± 0.07 1.49 ± 0.04 La(ppm) 38 ± 2 38 ± 1 25.0 ± 0.8 25 ± 1 Li(ppm) 12 ± 2 (11) 12.9 ± 0.4 9 ± 2 Lu(ppm) 0.27 ± 0.03 0.25 ± 0.01 0.512 ± 0.025 0.51 ± 0.02 Mg(%) 0.92 ± 0.06 1.08 ± 0.02 2.08 ± 0.10 2.16 ± 0.03 Mn(ppm) 710 ± 50 770 ± 20 1410 ± 90 1520 ± 60 Mo(ppm) 2.7 ± 0.9 \cdots 1.2 ± 0.2 2.48 ± 17 Na(%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.08 2.34 ± 0.08 Nb(ppm) 15 15 ± 1 14 ± 3 \cdots Nd(ppm) 16 199 ± 3 13 ± 4 \cdots P(ppm) 200 ± 100 2100 ± 100 1900 ± 90 1500 ± 100 Pb(ppm) 36 ± 5 13 ± 1 13.56 ± 0.03 11 ± 2 Pr(ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.8 ± 0.3 Rb(ppm) 67 ± 1 68.6 ± 2.3 47.1 ± 0.6 48 ± 2 Si(%) 27.5 ± 0.3 27.7 ± 0.35 25.38 ± 0.24 25.3 ± 0.4 Si(ppm) 600 ± 9 688 ± 17 330 ± 5 346 ± 14 Ta(ppm) 6.63 ± 9 6.68 ± 17 330 ± 5 346 ± 14 Ta(ppm) 6.5 ± 0.5 6.1 ± 17 330 ± 5 346 ± 14 Ta(ppm) 0.63 ± 9	In	(ppm)	0.04		0.092 ± 0.005				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	К	(%)	2.42 ± 0.31	2.39 ± 0.09	1.40 ± 0.07	1.49 ± 0.04			
Li(ppm)12t2(11)12.9t0.49t2Lu(ppm)0.27t0.030.25t0.010.212t0.0250.51t0.02Mg(%)0.92t0.061.08t0.022.08t0.1022.16t0.02Mn(ppm)710t50770t201410t901520t60Mo(ppm)2.7t0.91.2t0.22.48t17Na(%)3.16t0.093.11t0.092.43t0.082.34t100Nb(ppm)1515t114t3 <td>La</td> <td>(ppm)</td> <td>38 ± 2</td> <td>38 ± 1</td> <td>25.0 ± 0.8</td> <td>25 ± 1</td>	La	(ppm)	38 ± 2	38 ± 1	25.0 ± 0.8	25 ± 1			
Lu (ppm) 0.27 ± 0.03 0.25 ± 0.01 0.212 ± 0.025 0.51 ± 0.02 Mg (%) 0.92 ± 0.06 1.08 ± 0.02 2.08 ± 0.10 2.16 ± 0.03 Mn (ppm) 7.10 ± 50 770 ± 20 1410 ± 90 1520 ± 60 Mo (ppm) 2.7 ± 0.9 1.2 ± 0.2 248 ± 17 Na (%) 3.16 ± 0.09 3.11 ± 0.09 2.43 ± 0.08 2.34 ± 0.08 Nb (ppm) 15 15 ± 1 14 ± 3 Nd (ppm) 33 ± 3 30 ± 2 2.87 ± 0.6 28 ± 2 Ni (ppm) 16 19 ± 3 13 ± 4 P (ppm) 2200 ± 100 2100 ± 100 1900 ± 90 1500 ± 100 Pb (ppm) 36 ± 5 13 ± 1 13.56 ± 0.03 111 ± 2 Pr (ppm) 7.6 8.3 ± 0.6 6.9 ± 0.6 6.8 ± 0.3 Rb (ppm) 67 ± 1 68.6 ± 2.3 47.1 ± 0.6 48 ± 2 S (ppm) 4.3 ± 0.4 (0.6) 662 ± 0.10 Sc (ppm) 12 ± 1 13 ± 1 32.8 ± 1.7 33 ± 2 Si (%) 27.5 ± 0.3 27.7 ± 0.35 25.88 ± 0.24 25.3 ± 0.4 Sm (ppm) 660 ± 9 658 ± 17 330 ± 5 346 ± 14 Ta (ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.09 1.07 ± 0.3 Sn (ppm) 4.2 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.3 Sn (ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.66 6.2 ± 0.10 Tm (ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.09 1.07 ± 0.3 Sn (ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.09 1.07 ± 0.3 Sn (ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.09 1.07 ± 0.3 Sn (ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.09 1.07 ± 0.04 Th (ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.04 Th (ppm) 0.70 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.03 Tm (ppm) 0.24 0.03 0.63 ± 0.13 33 ± 0.06 1.35 ± 0.03 Tm (ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.03 Tm (ppm) 0.25 0.40 ± 0.09 Y (ppm) 1.0 ± 11 1.02 ± 5 404 ± 400 416 ± 14 W (ppm) 0.55 0.40 ± 0.09 Y (ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn (ppm) 88 ± 9 86 ± 8 129 ± 1 1 1277 ± 9 Zr (ppm) 2.7 ± 18 2.20 ± 1 3 9± 7 37 ± 2 Yb (ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn (ppm) 88 ± 9 86 ± 8 129 ± 1 1 1277 ± 9 Zr (ppm) 2.7 ± 18 2.20 ± 4 4 191 ± 5 188 ± 16	Li	(ppm)	12 ± 2	(11)	12.9 ± 0.4	9 ± 2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lu	(ppm)	0.27 ± 0.03	0.25 ± 0.01	0.512 ± 0.025	0.51 ± 0.02			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mg	(%) (nnm)	0.92 ± 0.06	1.08 ± 0.02	2.08 ± 0.10	2.16 ± 0.03			
Na(ip)1.11.0.31.1.21.1.20.081.2.41.1.41.1.4Na(ik)3.1.6±0.093.1.1±0.092.4.3±0.081.2.34±0.08Nb(ppm)33±330±22.8.7±0.062.84±2Ni(ppm)1619±313±4P(ppm)2200±1002100±1001900±901500±100Pb(ppm)36±513±113.56±0.0311±2Pr(ppm)7.68.3±0.66.9±0.66.8±0.3Rb(ppm)67±168.6±2.347.1±0.64.8±2S(ppm)412±135Sb(ppm)4.3±0.4(0.6)0.62±0.10Sc(ppm)1.2±113±132.8±0.7±0.3Sn(ppm)5.9±0.45.7±0.36.58±0.176.7±0.3Sn(ppm)0.90±0.90.89±0.080.79±0.09	Mo	(ppm) (ppm)	710 ± 50 27 + 09	//0 ± 20	1410 ± 90 12 + 02	1520 ± 60 248 + 17			
Nb(ppm)15151514141413Nd(ppm)33 \pm 330 \pm 228.7 \pm 0.628 \pm 2Ni(ppm)1619 \pm 313 \pm 4P(ppm)200 \pm 1002100 \pm 1001900 \pm 901500 \pm Pb(ppm)36 \pm 513 \pm 113.56 \pm 0.0311 \pm 2Pr(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.66.8 \pm 0.3Rb(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.66.8 \pm 0.3Sb(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)12 \pm 113 \pm 132.8 \pm 1.733 \pm 2Si(%)27.5 \pm 0.327.7 \pm 0.356.58 \pm 0.176.7 \pm 0.3Sn(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)0.90 \pm 9658 \pm 17330 \pm 5346 \pm 14Ta(ppm)0.90 \pm 0.1	Na	(%)	3.16 + 0.09	3.11 + 0.09	2.43 + 0.08	2.34 + 0.08			
Nd(ppm)33 \pm 330 \pm 228.7 \pm 0.628 \pm 2Ni(ppm)1619 \pm 313 \pm 4P(ppm)2200 \pm 1002100 \pm 1001900 \pm 901500 \pm 100Pb(ppm)36 \pm 513 \pm 113.56 \pm 0.0311 \pm 2Pr(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.66.8 \pm 0.3Rb(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.648 \pm 2S(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)1.2 \pm 13 \pm 132.8 \pm 1.733 \pm 2Si(%)27.5 \pm 0.327.7 \pm 0.3525.38 \pm 0.176.7 \pm 0.3Sm(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)0.90 \pm 0.090.89 \pm 0.080.79 \pm 0.09Sr(ppm)0.90 \pm 0.030.63 \pm 0.131.33 \pm 0.061.35 \pm 0.04 </td <td>Nb</td> <td>(ppm)</td> <td>15</td> <td>15 ± 1</td> <td>14 ± 3</td> <td></td>	Nb	(ppm)	15	15 ± 1	14 ± 3				
Ni(ppm)1619 \pm 313 \pm 4P(ppm)2200 \pm 1002100 \pm 1001900 \pm 901500 \pm 100Pb(ppm)36 \pm 513 \pm 113.56 \pm 0.0311 \pm 2Pr(ppm)7.68.3 \pm 0.66.9 \pm 0.66.8 \pm 0.3Rb(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.648 \pm 2S(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)1.2 \pm 113 \pm 132.88 \pm 1.733 \pm 2Si(%)27.5 \pm 0.327.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)600 \pm 9658 \pm 17330 \pm 5346 \pm 14Ta(ppm)0.90 \pm 0.090.89 \pm 0.080.79 \pm 0.090.77 \pm 0.04Th(ppm)0.65 \pm 0.5 <td>Nd</td> <td>(ppm)</td> <td>33 ± 3</td> <td>30 ± 2</td> <td>28.7 ± 0.6</td> <td>28 ± 2</td>	Nd	(ppm)	33 ± 3	30 ± 2	28.7 ± 0.6	28 ± 2			
P(ppm)2200 \pm 1002100 \pm 1001900 \pm 901500 \pm 100Pb(ppm)36 \pm 513 \pm 113.56 \pm 0.0311 \pm 2Pr(ppm)7.68.3 \pm 0.66.9 \pm 0.66.8 \pm 0.3Rb(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.648 \pm 2S(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)12 \pm 113 \pm 132.8 \pm 1.733 \pm 2Si(%)27.5 \pm 0.327.7 \pm 0.3525.38 \pm 0.2425.3 \pm 0.4Sm(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)660 \pm 9658 \pm 17330 \pm 5346 \pm 14Ta(ppm)0.70 \pm 0.110.64 \pm 0.041.05 \pm 0.09Tb(ppm)0.70 \pm 0.151.88 \pm 0.161.33 \pm 0.066.2 \pm 0.7Ti(%)0.63 \pm 0.030.63 \pm 0.161.35 \pm 0.03(0.54)U <td>Ni</td> <td>(ppm)</td> <td>16</td> <td>19 ± 3</td> <td>13 ± 4</td> <td></td>	Ni	(ppm)	16	19 ± 3	13 ± 4				
Pb(ppm)36 \pm 513 \pm 113.56 \pm 0.0311 \pm 2Pr(ppm)67 \pm 168.6 \pm 0.66.9 \pm 0.66.8 \pm 0.3Rb(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.648 \pm 2S(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)12 \pm 113 \pm 132.8 \pm 1.733 \pm 2Si(%)27.5 \pm 0.327.7 \pm 0.3525.38 \pm 0.2425.3 \pm 0.4Sm(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)660 \pm 9658 \pm 17330 \pm 5346 \pm 14Ta(ppm)0.90 \pm 0.090.89 \pm 0.080.79 \pm 0.09Tb(ppm)0.70 \pm 0.10.64 \pm 0.041.05 \pm 0.091.07 \pm 0.04Th(ppm)0.63 \pm 0.151.88 \pm 0.161.71 \pm 0.161.69 \pm 0.19V(ppm)0.24 \pm 0.151.88 \pm 0.161.71 \pm 0.16	Р	(ppm)	2200 ± 100	2100 ± 100	1900 ± 90	1500 ± 100			
Pr(ppm)7.68.3 \pm 0.66.9 \pm 0.66.8 \pm 0.3Rb(ppm)67 \pm 168.6 \pm 2.347.1 \pm 0.648 \pm 2S(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)12 \pm 113 \pm 132.8 \pm 0.10Sc(ppm)12 \pm 113 \pm 132.8 \pm 0.2425.3 \pm 0.4Sm(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)660 \pm 9658 \pm 17330 \pm 5346 \pm 14Ta(ppm)0.90 \pm 0.090.89 \pm 0.080.79 \pm 0.09Sr(ppm)0.70 \pm 0.10.64 \pm 0.041.05 \pm 0.09Tb(ppm)0.63 \pm 0.030.63 \pm 0.131.33 \pm 0.066.2 \pm 0.7Ti(%)0.63 \pm 0.151.88 \pm 0.161.71 \pm 0.161.69 \pm 0.19V(ppm)1.92 \pm 0.151.88 \pm 0.161.71 \pm 0.161.69 \pm 0.19V(ppm)	Pb	(ppm)	36 ± 5	13 ± 1	13.56 ± 0.03	11 ± 2			
ND(ppm)07 \pm 108.6 \pm 2.347.1 \pm 0.646 \pm 2S(ppm)412 \pm 13Sb(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)12 \pm 113 \pm 132.8 \pm 1.733 \pm 2Si(%)27.5 \pm 0.327.7 \pm 0.3525.38 \pm 0.2425.3 \pm 0.4Sm(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)4.22.3 \pm 0.42.1 \pm 0.66Sr(ppm)660 \pm 9658 \pm 17330 \pm 5346 \pm 14Ta(ppm)0.90 \pm 0.090.89 \pm 0.080.79 \pm 0.09Tb(ppm)0.70 \pm 0.110.64 \pm 0.041.05 \pm 0.09Th(ppm)0.63 \pm 0.131.33 \pm 0.061.35 \pm 0.03Tm(ppm)0.340.26 \pm 0.020.59 \pm 0.035(0.54)U(ppm)1.92 \pm 0.151.88 \pm 0.40 \pm	Pr	(ppm)	/.6 67 ± 1	8.3 ± 0.6	6.9 ± 0.6	6.8 ± 0.3			
Sb(ppm)4.3 \pm 0.4(0.6)0.62 \pm 0.10Sc(ppm)12 \pm 113 \pm 132.8 \pm 1.733 \pm 2Si(%)27.5 \pm 0.327.7 \pm 0.3525.38 \pm 0.2425.3 \pm 0.4Sm(ppm)5.9 \pm 0.45.7 \pm 0.36.58 \pm 0.176.7 \pm 0.3Sn(ppm)4.22.3 \pm 0.42.1 \pm 0.66Sr(ppm)660 \pm 9658 \pm 17330 \pm 5346 \pm 14Ta(ppm)0.90 \pm 0.090.89 \pm 0.080.79 \pm 0.09Tb(ppm)0.70 \pm 0.10.64 \pm 0.041.05 \pm 0.09Tb(ppm)0.63 \pm 0.030.63 \pm 0.131.33 \pm 0.061.35 \pm 0.03Tm(ppm)0.340.26 \pm 0.020.59 \pm 0.035(0.54)U(ppm)1.20 \pm 1120 \pm 5404 \pm 40416 \pm 14W(ppm)0.550.40 \pm 0.09V0.09VV(ppm)2.0 \pm 3 <td< td=""><td>κυ ς</td><td>(ppm)</td><td>67 ± 1</td><td>08.0 ± 2.3</td><td>47.1 ± 0.0 112 + 13</td><td>48 ± 2</td></td<>	κυ ς	(ppm)	67 ± 1	08.0 ± 2.3	47.1 ± 0.0 112 + 13	48 ± 2			
Sc(ppm)12±113±132.8±1.733±2Si(%)27.5±0.327.7±0.3525.38±0.2425.3±0.4Sm(ppm)5.9±0.45.7±0.36.58±0.176.7±0.3Sn(ppm)4.22.3±0.42.1±0.6Sr(ppm)660±9658±17330±5346±14Ta(ppm)0.90±0.090.89±0.080.79±0.09Tb(ppm)0.70±0.10.64±0.041.05±0.09Tb(ppm)0.70±0.10.64±0.041.05±0.091.07±0.04Th(ppm)0.63±0.030.63±0.131.33±0.061.35±0.03Tm(ppm)0.340.26±0.020.59±0.035(0.54)U(ppm)1.92±1.1120±5404±40416±14W(ppm)0.550.40±0.0977±114W(ppm)1.72±0.21.6±	Sb	(ppm)	4.3 ± 0.4	(0.6)	0.62 ± 0.10				
Si $(\%)$ 27.5 ± 0.3 27.7 ± 0.35 25.38 ± 0.24 25.3 ± 0.4 Sm(ppm) 5.9 ± 0.4 5.7 ± 0.3 6.58 ± 0.17 6.7 ± 0.3 Sn(ppm) 4.2 2.3 ± 0.4 2.1 ± 0.6 $$ Sr(ppm) 660 ± 9 658 ± 17 330 ± 5 346 ± 14 Ta(ppm) 0.90 ± 0.09 0.89 ± 0.08 0.79 ± 0.09 $$ Tb(ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.04 Th(ppm) 0.63 ± 0.03 0.63 ± 0.13 1.33 ± 0.06 1.35 ± 0.03 Tm(ppm) 0.34 0.26 ± 0.02 0.59 ± 0.035 (0.54) U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 1.20 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 $$ 0.40 ± 0.09 $$ Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Sc	(ppm)	12 ± 1	13 ± 1	32.8 ± 1.7	33 ± 2			
Sm(ppm) 5.9 ± 0.4 5.7 ± 0.3 6.58 ± 0.17 6.7 ± 0.3 Sn(ppm) 4.2 2.3 ± 0.4 2.1 ± 0.6 $$ Sr(ppm) 660 ± 9 658 ± 17 330 ± 5 346 ± 14 Ta(ppm) 0.90 ± 0.09 0.89 ± 0.08 0.79 ± 0.09 $$ Tb(ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 $$ Th(ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.04 Th(ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.60 6.2 ± 0.7 Ti(%) 0.63 ± 0.03 0.63 ± 0.13 1.33 ± 0.06 1.35 ± 0.03 Tm(ppm) 0.34 0.26 ± 0.02 0.59 ± 0.035 (0.54) U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 1.20 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 $$ 0.40 ± 0.09 $$ Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Si	(%)	27.5 ± 0.3	27.7 ± 0.35	25.38 ± 0.24	25.3 ± 0.4			
Sn(ppm) 4.2 2.3 ± 0.4 2.1 ± 0.6 $$ Sr(ppm) 660 ± 9 658 ± 17 330 ± 5 346 ± 14 Ta(ppm) 0.90 ± 0.09 0.89 ± 0.08 0.79 ± 0.09 $$ Tb(ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.04 Th(ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.60 6.2 ± 0.7 Ti(%) 0.63 ± 0.03 0.63 ± 0.13 1.33 ± 0.06 1.35 ± 0.03 Tm(ppm) 0.34 0.26 ± 0.02 0.59 ± 0.035 (0.54) U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 1.20 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 $$ 0.40 ± 0.09 $$ Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Sm	(ppm)	5.9 ± 0.4	5.7 ± 0.3	6.58 ± 0.17	6.7 ± 0.3			
Sr(ppm) 660 ± 9 658 ± 17 330 ± 5 346 ± 14 Ta(ppm) 0.90 ± 0.09 0.89 ± 0.08 0.79 ± 0.09 $$ Tb(ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.04 Th(ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.60 6.2 ± 0.7 Ti(%) 0.63 ± 0.03 0.63 ± 0.13 1.33 ± 0.06 1.35 ± 0.03 Tm(ppm) 0.34 0.26 ± 0.02 0.59 ± 0.035 (0.54) U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 120 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 $$ 0.40 ± 0.09 $$ Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Sn	(ppm)	4.2	2.3 ± 0.4	2.1 ± 0.6				
Ta(ppm) 0.90 ± 0.09 0.89 ± 0.08 0.79 ± 0.09 $$ Tb(ppm) 0.70 ± 0.1 0.64 ± 0.04 1.05 ± 0.09 1.07 ± 0.04 Th(ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.60 6.2 ± 0.7 Ti(%) 0.63 ± 0.03 0.63 ± 0.13 1.33 ± 0.06 1.35 ± 0.03 Tm(ppm) 0.34 0.26 ± 0.02 0.59 ± 0.035 (0.54) U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 120 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 0.40 ± 0.09 Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Sr	(ppm)	660 ± 9	658 ± 17	330 ± 5	346 ± 14			
Th(ppm) 0.70 ± 0.1 0.64 ± 0.04 1.03 ± 0.03 1.07 ± 0.04 Th(ppm) 6.5 ± 0.5 6.1 ± 0.6 6.04 ± 0.60 6.2 ± 0.7 Ti(%) 0.63 ± 0.03 0.63 ± 0.13 1.33 ± 0.06 1.35 ± 0.03 Tm(ppm) 0.34 0.26 ± 0.02 0.59 ± 0.035 (0.54) U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 120 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 $$ 0.40 ± 0.09 $$ Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	та ть	(ppm)	0.90 ± 0.09	0.89 ± 0.08	0.79 ± 0.09	 1 07 ± 0.04			
Ti (ppm) 0.5 1 0.5 0.1 1 0.6 0.64 1 0.66 0.2 1 0.7 Ti $(\%)$ 0.63 \pm 0.03 0.63 \pm 0.13 1.33 \pm 0.06 1.35 \pm 0.03 Tm (ppm) 0.34 0.26 \pm 0.02 0.59 \pm 0.035 (0.54) U (ppm) 1.92 \pm 0.15 1.88 \pm 0.16 1.71 \pm 0.16 1.69 \pm 0.19 V (ppm) 120 \pm 11 120 \pm 5 404 \pm 40 416 \pm 14 W (ppm) 0.55 $$ 0.40 \pm 0.09 $$ Y (ppm) 20 \pm 3 20 \pm 1 39 \pm 7 37 \pm 2 Yb (ppm) 1.72 \pm 0.2 1.6 \pm 0.2 3.39 \pm 0.08 3.5 \pm 0.2 Zn (ppm) 88 \pm 9 86 \pm 8 129 \pm 1 127 \pm 9 Zr (ppm) 227 \pm 18 230 \pm 4 191 \pm 5 188 \pm 16	Th	(ppiii) (ppm)	0.70 ± 0.1	61 ± 0.04	1.05 ± 0.09	1.07 ± 0.04 62 + 07			
Tm(ppm) 0.34 0.26 ± 0.02 0.59 ± 0.035 (0.54) U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 120 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 0.40 ± 0.09 Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Ti	(%)	0.63 ± 0.03	0.63 + 0.13	1.33 + 0.06	1.35 ± 0.03			
U(ppm) 1.92 ± 0.15 1.88 ± 0.16 1.71 ± 0.16 1.69 ± 0.19 V(ppm) 120 ± 11 120 ± 5 404 ± 40 416 ± 14 W(ppm) 0.55 $$ 0.40 ± 0.09 $$ Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Tm	(ppm)	0.34	0.26 ± 0.02	0.59 ± 0.035	(0.54)			
V(ppm)120 \pm 11120 \pm 5404 \pm 40416 \pm 14W(ppm)0.550.40 \pm 0.09Y(ppm)20 \pm 320 \pm 139 \pm 737 \pm 2Yb(ppm)1.72 \pm 0.21.6 \pm 0.23.39 \pm 0.083.5 \pm 0.2Zn(ppm)88 \pm 986 \pm 8129 \pm 1127 \pm 9Zr(ppm)227 \pm 18230 \pm 4191 \pm 5188 \pm 16	U	(ppm)	1.92 ± 0.15	1.88 ± 0.16	1.71 ± 0.16	1.69 ± 0.19			
W(ppm) 0.55 0.40 ± 0.09 Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	V	(ppm)	120 ± 11	120 ± 5	404 ± 40	416 ± 14			
Y(ppm) 20 ± 3 20 ± 1 39 ± 7 37 ± 2 Yb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	W	(ppm)	0.55		0.40 ± 0.09				
rb(ppm) 1.72 ± 0.2 1.6 ± 0.2 3.39 ± 0.08 3.5 ± 0.2 Zn(ppm) 88 ± 9 86 ± 8 129 ± 1 127 ± 9 Zr(ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	Y	(ppm)	20 ± 3	20 ± 1	39 ± 7	37 ± 2			
Zr (ppm) 227 ± 18 230 ± 4 191 ± 5 188 ± 16	YD 7n	(ppm)	1.72 ± 0.2	1.0 ± 0.2	3.39 ± U.U8 120 ⊥ 1	3.5 ± U.2 127 ± 0			
	Zr	(ppm)	227 ± 18	230 ± 4	123 ± 1 191 ± 5	127 ± 9 188 ± 16			

Table 24. Concentrations of elements in USGS Rocks - AGV-1, AGV-2, BCR-1 and BCR-2.

		BHVO-1	BHVO-2	BIR-1	DNC-1			
		Basalt	Basalt	Basalt	Dalasita			
Flomon	t/I Inite	Hawaiian (mean & std. dev.)	Hawaiian (mean & std. dev.)	Icelandic (mean & std. dev.)	Dolerite (mean & std. dev.)			
Liemen	l/ Units	(mean & stu. dev.)	(inean & stu. dev.)	(mean & stu. dev.)	(mean & stu. dev.)			
Ag	(ppm)	(0.057)						
AĬ	(%)	7.35 ± 0.18	7.16 ± 0.08	8.21 ± 0.08	9.71 ± 0.09			
As	(ppm)	(0.4)		(0.44)	(0.12)			
Au	(ppb)	1.53 ± 0.31						
B	(ppm)	2.5 ± 0.6		(0.33)	(0.9)			
Ва	(ppm)	139 ± 14	130 ± 13	(/) 0 E1 + 0 00	118 ± 11			
Cd	(%) (nnm)	8.18 ± 0.13 (0.12)	8.17 ± 0.12	9.51 ± 0.09	8.21 ± 0.05			
Ce	(ppm)	39 ± 4	38 ± 2	1.9 ± 0.4				
Со	(ppm)	45 ± 2	45 ± 3	52 ± 2	57 ± 2.2			
Cr	(ppm)	290 ± 30	280 ± 19	370 ± 8	270 ± 8.5			
Cs	(ppm)	0.13 ± 0.06						
Cu	(ppm)	130 ± 13	127 ± 7	125 ± 4	100 ± 2.6			
Dy	(ppm)	5.2 ± 0.3	5.22 ± 0.21	4 ± 1	(3)			
Er	(ppm)	(2.1)	2.53 ± 0.17		0.59 ± 0.03			
F	(ppiii) (ppm)	2.00 ± 0.08 385 ± 31	(370)	(44)	(66)			
Fe	(%)	8.51 + 0.19	8.63 + 0.14	7.90 + 0.08	6.97 + 0.10			
Ga	(ppm)	21 ± 2	21.7 ± 0.9	(16)	(15)			
Gd	(ppm)	5.35 ± 0.46	6.3 ± 0.2	1.8 ± 0.4	(2)			
Hf	(ppm)	4.1 ± 0.3	4.1 ± 0.3	0.6 ± 0.08				
Hg	(ppm)	4.4 ± 0.2						
Но	(ppm)	(0.93)	1.04 ± 0.04		(0.62)			
In v	(ppm)							
N La	(%) (nnm)	0.46 ± 0.07 16 + 1	0.43 ± 0.01 15 + 1	0.025 ± 0.002	0.194 ± 0.007			
La	(ppm)	46 + 15	(5)	36 ± 0.07	5.0 ± 0.3 5.2 + 0.29			
Lu	(ppm)	(0.32)	0.28 ± 0.01	(0.26)				
Mg	(%)	4.28 ± 0.12	4.36 ± 0.07	5.85 ± 0.05	6.11 ± 0.07			
Mn	(ppm)	1280 ± 30	1290 ± 40	1350 ± 0.002	1160 ± 23			
Мо	(ppm)	0.96 ± 0.04	(2.9)					
Na	(%)	1.64 ± 0.06	1.64 ± 0.06	1.35 ± 0.03	1.40 ± 0.04			
ND	(ppm)	19 ± 2	18 ± 2	(0.6)	(3)			
Ni	(ppiii) (ppm)	25 ± 2 120 + 16	25.0 ± 1.0 110 + 7	2.5 ± 0.7 170 + 6	5.2 ± 0.50 2/17 + 12			
P	(ppm)	1200 ± 100 1200 + 100	1200 + 100	92 + 40	305 + 22			
Pb	(ppm)	2.6 ± 0.2	(1.5)	(3)	(6.3)			
Pr	(ppm)	(5.6)						
Rb	(ppm)	11 ± 2	9.8 ± 1.0		(4.5)			
S	(ppm)	(100)						
Sb	(ppm)	0.17 ± 0.01	(0.3)	(0.58)	0.96 ± 0.03			
SC	(ppm)	31.8 ± 1.3	32 ± 1	44 ± 1	31 ± 1			
Sm	(70) (nnm)	25.2 ± 0.5 62 + 03	23.5 ± 0.5 62 + 0.4	22.42 ± 0.09 (1.1)	22.05 ± 0.1			
Sn	(ppm)	(2.2)	(1.9)	(1.1)				
Sr	(mag)	403 ± 25	389 ± 23	110 ± 2	144 ± 1.8			
Та	(ppm)	1.08 ± 0.18	(1.4)					
Tb	(ppm)	1.0 ± 0.3	(0.9)					
Th	(ppm)	(1.1)	1.2 ± 0.3					
Ti T	(%)	1.63 ± 0.10	1.63 ± 0.02	0.575 ± 0.006	0.288 ± 0.004			
Tm	(ppm)	0.30 ± 0.04	0.33 ± 0.02					
U	(ppm)	U.4U ± U.Ub 217 ⊥ 10	U.42 ± U.Ub 217 + 11	 210 + 11	 1/Q + 0.0			
V \\/	(ppm)	(0 27)	JI/ ± 11 	JIU 1 II 	 			
Ŷ	(ppm)	28 ± 2	26 ± 2	16 ± 1	18 ± 0.8			
Yb	(ppm)	2.0 ± 0.2	2.0 ± 0.2	1.7 ± 0.1	2.0 ± 0.1			
Zn	(ppm)	105 ± 5	103 ± 6	70 ± 9	70 ± 2.4			
Zr	(ppm)	179 ± 21	172 ± 11	18 ± 1	38 ± 1			

Table 25. Concentrations of elements in USGS Rocks - BHVO-1, BHVO-2, BIR-1 and DNC-1.

Liement/Units (mean & std. dev.) (mean & std	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Ag (ppm) 0.014 ± 0.007 0.046 ± 0.003 0.046 Al (%) 0.17 ± 0.09 0.24 ± 0.03 7.53 ± 0.11 3.23 As (ppm) 0.034 ± 0.006 0.67 ± 0.13 0.67 Au (ppb) 0.88 ± 0.27 3.2 ± 1.0 1.7 ± 0.5 Ba (ppm) 0.5 ± 0.1 1.7 ± 0.5 60 11 Ga (%) 0.10 ± 0.03 0.09 ± 0.01 0.986 ± 0.049 0.049	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
As(ppm) 0.034 ± 0.006 0.67 ± 0.13 0.67 ± 0.13 Au(ppb) 0.88 ± 0.27 3.2 ± 1.0 B(ppm) 0.5 ± 0.1 1.7 ± 0.5 Ba(ppm)(2.35)(16) 1080 ± 60 1Ca(%) 0.10 ± 0.03 0.09 ± 0.01 0.986 ± 0.049	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Au(ppb) 0.88 ± 0.27 3.2 ± 1.0 B(ppm) 0.5 ± 0.1 1.7 ± 0.5 Ba(ppm)(2.35)(16) 1080 ± 60 1Ca(%) 0.10 ± 0.03 0.09 ± 0.01 0.986 ± 0.049	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
B (ppm) 0.5 ± 0.1 1.7 ± 0.5 Ba (ppm) (2.35) (16) 1080 ± 60 1 Ca (%) 0.10 ± 0.03 0.09 ± 0.01 0.986 ± 0.049 7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Cd (nnm) (0.009) 0.061 + 0.012 0.01	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Ce (ppm) 0.067 ± 0.016 171 ± 23	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Co (ppm) 139 ± 10 120 ± 10 2.3 ± 0.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Cr (ppm) 3920 ± 170 15500 ± 1100 20 ± 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Cs (ppm) 1.48 ± 0.21	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Cu (ppm) 7.5 \pm 2.4 (3) 12 \pm 3	2.5 ± 0.5 1.2 ± 0.3
Dy (ppm) (0.0034) 2.48 ± 0.31	1.2 ± 0.5
$EI (ppiii) (0.0059) = 1.30 \pm 0.09$ $Eu (ppm) 0.0011 \pm 0.0003 = 1.21 \pm 0.20$	1 41 + 0 12
F (ppm) 12 ± 6 720 ± 30 1	1260 ± 90
Fe (%) 6.08 ± 0.15 5.43 ± 0.15 1.36 ± 0.10	1.87 ± 0.07
Ga (ppm) (0.15) 19.5 ± 1.5	22 ± 2
Gd (ppm) 4.7 ± 0.7	4.1 ± 0.8
Hf (ppm) 5.7 ± 1.2	7.9 ± 0.7
Hg (ppm) 0.010 ± 0.005 0.09 ± 0.03 0.	0.049 ± 0.013
HO (ppm) 0.0013 ± 0.0010 0.40 ± 0.13 (0.37 ± 0.02
$K (\%) 0.0024 \pm 0.0003 \qquad \qquad 0.025 \pm 0.001 \qquad 0.001 \qquad 0.0025 \pm 0.001 \qquad 0.001 \qquad 0.0025 \pm 0.001 \qquad 0.001 \qquad 0.001 \qquad 0.001 \qquad 0.0025 \pm 0.001 \qquad 0.0$	3.030 ± 0.002 3.73 + 0.12
La (ppm) 0.029 ± 0.009 104 ± 15	86 ± 5
Li (ppm) 2.1 ± 0.5 21.3 ± 0.6	36 ± 5
Lu (ppm) 0.0026 ± 0.0005 0.143 ± 0.017 0.).113 ± 0.024
Mg (%) 29.94 ± 0.29 29.8 ± 1.1 0.235 ± 0.031 (0.46 ± 0.04
Mn (ppm) 940 ± 80 830 ± 40 215 ± 42	260 ± 40
Mo (ppm) 0.14 ± 0.09 6.5 ± 0.8	1.0 ± 0.6
Na (%) 0.013 ± 0.008 (0.02) 2.47 ± 0.08	3.02 ± 0.09
No (ppn) (0.032) 20.4 ± 2.0 No (ppm) 0.030 ± 0.004 57 ± 2	13 ± 4 53 + 8
Ni (ppm) 2350 ± 180 3780 ± 220	4.9 ± 2.3
P (ppm) 9 \pm 7 380 \pm 90	600 ± 40
Pb (ppm) 12 ± 3 (4) 46 ± 8	31 ± 4
Pr (ppm) 0.0063 ± 0.0004 17 ± 3	19 ± 2
Rb (ppm) 0.058 ± 0.01 (2) 215 ± 2	170 ± 3
S (ppm) 13 ± 4 140 ± 55 Sh (npm) 0.47 ± 0.04 (0.6) 0.32 ± 0.06 0	
Sc (ppm) 35 ± 0.3 (3) 28 ± 0.2	35 + 04
Si (%) 18.90 ± 0.25 18.4 ± 0.4 33.84 ± 0.14 33.84 ± 0.14	32.24 ± 0.28
Sm (ppm) 0.0048 ± 0.0012 7.9 ± 0.7	7.2 ± 0.6
Sn (ppm) (0.36) 3.3 ± 0.6	1.6 ± 0.5
Sr (ppm) 0.33 ± 0.06 249 ± 10	478 ± 3
Ta (ppm) 1.4 ± 0.4 (0.88 ± 0.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.48 ± 0.07
Ti $(\%)$	24.0 ± 1.5 1.295 + 0.022
Tm (ppm) 0.00140 ± 0.0004 0.165 ± 0.017 0.	0.17 ± 0.022
U (ppm) 0.0036 ± 0.0005 3.5 ± 0.5	2.04 ± 0.17
V (ppm) 12 ± 6 22 ± 8 18 ± 4	36 ± 5
W (ppm) 0.021 ± 0.007 0.43 ± 0.05 0	0.15 ± 0.06
Y (ppm) 14 ± 4	11.4 ± 2.3
YD (ppm) 0.015 ± 0.011 0.86 ± 0.15 (0.78 ± 0.14
Zr (ppm) 201 + 24	300 + 30

Table 26. Concentrations of elements in USGS Rocks - DTS-1, DTS-2B, G-1 and G-2.

		GSP-1 Granodiorite Silver Plume (mean & std. dev.)			Grar Silve	GSP-2 Granodiorite Silver Plume			1AG-1 1arine Mud	2	F Per E. Aus	PCC-1 Peridotite E. Austin Creek			
Elemen	t/Units				(mean	& std	. dev.)	(mean	& std	. dev.)	(mean	& sto	l. dev.)		
Ag Al	(ppm) (%)	0.086 8.02	± ±	0.014 0.15	7.88	 ±	0.11	8.68	(0.08) ±) 0.16	0.008 0.39	± ±	0.004 0.10		
As Au B	(ppm) (ppb) (ppm)	1.3	 ± +	0.2				140	(9.2) (2.4) +	6	0.057 0.9	± ± +	0.009 0.4 0.2		
Ba Ca	(ppm) (ppm) (%)	1310 1.46	± ±	10 0.07	1340 1.50	± ±	44 0.04	480 0.98	± ±	41 0.07	0.373	(1.2) ±	0.044		
Cd Ce	(ppm) (ppm) (ppm)	0.056 406	± ±	0.007 20	410	 ±	30	0.20 88	± ±	0.03 9 1.6	0.019 0.10	± ±	0.003 0.02 7		
Cr Cs	(ppm) (ppm)	13.0 0.95	± ±	0.8 2.6 0.16	20 1.2	± ±	0.8 8 0.1	97 8.6	± ±	1.0 8 0.7	2730 0.0055	± ±	7 240 0.0004		
Cu Dy	(ppm) (ppm)	34 5.4	± ±	5 0.4	43	± (6.1)	4	30 5.2	± ±	3 0.3	10 0.009	± ±	2 0.002		
Er Eu F	(ppm) (ppm) (ppm)	2.5 2.36 3600	± ± +	0.4 0.22 300	2.3	(2.2) (3000	0.1	1.6 770	(3) ± +	0.14 80	(0.0018 12	0.008 ± +	8) 0.0008 7		
Fe Ga	(%) (ppm)	3.01 22	± ±	0.09 3	3.43 22	± ±	0.11 2	4.76 20.0	± ±	0.42 1.5	5.78 0.7	± ±	, 0.17 0.4		
Gd Hf	(ppm) (ppm)	13 15.0	± ±	2 1.3	12 14	± ±	2 1	5.8 3.7	± ±	0.7 0.5	0.052	 ±	0.035		
Hg Ho In	(ppm) (ppm) (ppm)	0.019 1.2 0.051	± ± +	0.006 0.5 0.003	1.0	±	0.1	1.0	(0.02 ±	0.1	0.010 0.0023 0.0037	± ± +	0.005 0.0013 0.0004		
K La	(%) (ppm)	4.57 183	± ±	0.12 13	4.48 180	± ±	0.12 12	2.95 43	± ±	0.14 4	0.004 0.09	± ±	0.002 0.06		
Li Lu	(ppm) (ppm)	31 0.22	± ±	4 0.05	36 0.23	± ±	1 0.03	79 0.40	± ±	4 0.04	1.6 0.0062	± ±	0.7 0.0014		
Mg Mn Mo	(%) (ppm) (ppm)	0.596 310	± ± 	0.047 40	0.58 320 2.1	± ± ±	0.02 20 0.6	1.81 760	± ± (1.6)	0.06 70	26.07 920	± ± 	0.29 75		
Na Nb	(%) (ppm)	2.08 26	± ±	0.07 4	2.06 27	± ±	0.07 2	2.84	± (12)	0.08	0.020 1.2	± ±	0.014 0.4		
Nd Ni	(ppm) (ppm) (ppm)	190 9.8	± ± ⊥	17 3.2	200 17 1200	± ±	12 2	38 53 700	± ±	5 8	0.044 2400	± ±	0.01 160 7		
Pb Pr	(ppm) (ppm)	54 51	± ±	80 7 8	42 51	± ±	3 5	24	± (7.7)	3	0.015	± ±	7 4 0.005		
Rb S	(ppm) (ppm)	254 350	± ±	2 120	245	± 	7.0	150 0.39	* ±	6 0.06	0.066 20	± ±	0.006 1		
Sb Sc	(ppm) (ppm)	3.2 6.1	± ±	0.4 0.5	6.3	 ±	0.7	0.96 17	± ±	0.10 1	1.3 8.5	± ±	0.3 0.8		
Si Sm Sn	(%) (ppm) (ppm)	31.46 26.8 6.6	± +	0.23 2.5 1.4	31.1 27	± 	0.4 1	23.6 7.5	± (3.6)	0.4 0.6	0.0074	± +	0.28 0.0015 0.8		
Sr Ta	(ppm) (ppm)	234 0.91	- ± ±	3 0.14	240	± 	10	150	± (1.1)	15	0.40	± 	0.03		
Tb Th Ti	(ppm) (ppm) (%)	1.36 105 0.393	± ± ±	0.14 5 0.024	105 0.40	 ± ±	8 0.01	0.96 12 0.45	± ± ±	0.09 1 0.04	0.0015 0.013 0.0085	± ± ±	0.0003 0.004 0.0058		
Tm U	(ppm) (ppm)	2.2	 ±	0.3	2.40	(0.29 ±) 0.19	2.7	(0.43 ±	0.3	0.0027 0.0045	± ±	0.0004		
V W V	(ppm) (ppm) (ppm)	53 0.31 20	± ± +	7 0.13 6	52 29	± +	4	140 20	± (1.4) +	6 3	30	± 	5		
Yb Zn	(ppm) (ppm)	1.7 103	± ±	0.4 9	1.6 120	- + +	0.2 10	2.6 130	- + +	0.3 6	0.026 42	± ±	0.005 9		
Zr	(ppm)	530	±	70	550	±	30	130	±	13	8	±	4		

Table 27. Concentrations of elements in USGS Rocks - GSP-1, GSP-2, MAG-1 and PCC-1.

		QLO-1 Quartz Latite	RGM-1 Rhyolite Glass Mountain	RGM-2 Rhyolite Glass Mountain	SCo-1 Cody Shale
Elemen	t/Units	(mean & std. dev.)	(mean & std. dev.)	(mean & std. dev.)	(mean & std. dev.)
Ag	(ppm)	(0.0045)	(0.103)		(0.019)
AI	(%) (nnm)	8.60 ± 0.08	7.24 ± 0.16	7.29	7.21 ± 0.20
Au	(daa)	(1.3)	(0.33)		(2.4)
В	(ppm)	35 ± 3	28 ± 2		76 ± 6
Ва	(ppm)	1380 ± 40	800 ± 60	810 ± 20	530 ± 130
Ca	(%)	2.27 ± 0.06	0.81 ± 0.07	0.89	1.87 ± 0.14
Ca	(ppm) (ppm)	61 + 10	(0.06)	0.28 ± 0.02	(0.15)
Co	(ppm)	7.1 + 0.4	2.0 + 0.2	1.8 ± 0.1	10 + 1
Cr	(ppm)	(1.5)	2.6 ± 0.4	4 ± 1	67 ± 6
Cs	(ppm)	1.8 ± 0.2	10.0 ± 0.4	10.3 ± 0.2	7.5 ± 0.6
Cu	(ppm)	29 ± 3	12 ± 2	10 ± 0.8	30 ± 2
Dy	(ppm)	< 3.2	(4.3)	3.55 ± 0.06	(3.8)
Fu	(ppiii) (ppm)	14 + 02	<pre>< 2.2</pre> 0.75 + 0.14	2.24 ± 0.08 0.60 + 0.01	(2.5) 12 + 02
F	(ppm)	(280)	(370)	325	< 1500
Fe	(%)	3.04 ± 0.07	1.32 ± 0.05	1.27	3.54 ± 0.12
Ga	(ppm)	18 ± 1	14 ± 2	15.1 ± 0.2	13 ± 3
Gd	(ppm)	< 6.0		3.55 ± 0.06	4.0 ± 0.2
ΠΙ Ησ	(ppm)	4.4 ± 0.2	0.U ± 0.5	5.7 ± 0.2	4.4 ± 0.2
Но	(ppm)	< 1.0	< 1.0	0.74 ± 0.04	(0.93)
In	(ppm)				
К	(%)	3.03 ± 0.16	3.64 ± 0.18	3.61	2.28 ± 0.08
La	(ppm)	(31)	(25)	22.4 ± 0.6	31 ± 3
	(ppm) (ppm)	(24)	51 ± 9	(58)	(42) (0.37)
Mg	(%)	(0.42) 0.61 ± 0.04	(0.42) 0.168 ± 0.012	0.38 1 0.01	(0.37) 1.61 ± 0.14
Mn	(ppm)	720 ± 70	280 ± 20	300	420 ± 50
Mo	(ppm)	2.9 ± 0.7	2.4 ± 0.7	2.1 ± 0.4	< 2.8
Na	(%)	3.09 ± 0.10	3.00 ± 0.10	3.06	0.67 ± 0.09
ND	(ppm) (ppm)	11 ± 4 21 ± 5	10 ± 4 17 + 2	8.8 ± 0.2	10 ± 3 26 + 2
Ni	(ppm)	< 9.2	< 14	2.6 ± 0.4	20 ± 2 28 + 4
Р	(ppm)	1200 ± 200	200 ± 10		1000 ± 200
Pb	(ppm)	20.0 ± 0.8	(21)	20	< 30
Pr	(ppm)	(6.1)	(4.1)		(5.4)
KD S	(ppm)	78 ± 10	157 ± 4 (10)	140	120 ± 10
Sb	(ppm)	2.1 ± 0.4	1.3 ± 0.2	0.50 ± 0.02	(0.00) 2.50 ± 0.07
Sc	(ppm)	9.7 ± 1.4	5.0 ± 0.9	4.6 ± 0.4	10 ± 1
Si	(%)	30.5 ± 0.5	34.0 ± 0.6	34.3 ± 0.2	29.2 ± 0.4
Sm	(ppm)	4.8 ± 0.6	4.3 ± 0.5	3.8 ± 0.1	5.2 ± 0.4
Sn	(ppm)	(2.4)	(3.9)		(4.1)
Ta	(ppm)	0.76 ± 0.12	0.95 ± 0.10	0.90 ± 0.02	0.89 ± 0.08
Tb	(ppm)	0.84 ± 0.09	(0.74)	0.60 ± 0.01	0.75 ± 0.04
Th	(ppm)	4.1 ± 0.9	16 ± 2	14 ± 1	10.2 ± 0.8
Ti	(%)	0.37 ± 0.02	0.16 ± 0.02	0.15	0.37 ± 0.05
Tm	(ppm)	(0.39)	(0.37)	(0.36)	(0.35)
U V	(ppm) (ppm)	1.9 ± 0.2	(5.84) 13 + 2	(5.5) 11 + 1	(3) 118 + 13
Ŵ	(ppm)	(0.58)	(1.5)	··· ·	
Y	(ppm)	(28)	(27)	21.5 ± 0.4	(26)
Yb	(ppm)	2.8 ± 0.8	2.6 ± 0.4	2.5 ± 0.1	2.5 ± 0.4
Zn	(ppm)	59 ± 7	32 ± 7	32 ± 6	106 ± 9
۷Ľ	(ppm)	1/5 ± 15	214 ± 14	220 ± 10	105 ± 23

Table 28. Concentrations of elements in USGS Rocks QLO-1, RGM-1, RGM-2 and SCo-1.

		SDC-1	SDO-1	SGR-1	STM-1
		Mica Schist	Shale	Shale	Nepheline
		Schist	Devonian Ohio	Green River	Syenite
Elemen	Units	(mean & std. dev.)	(mean & std. dev.)	(mean & std. dev.)	(mean & std. dev.)
Ag	(ppm)	(0.009)		< 0.1	(0.079)
Al	(%)	8.51 ± 0.20	6.49 ± 0.12	3.53 ± 0.23	9.79 ± 0.12
As	(ppm)	< 5	68.5 ± 8.6	66 ± 6	< 5
Au	(ppb)	(1.5)		(9.8)	(0.4)
B	(ppm)	12.2 ± 1.1	128 ± 11	55 ± 4	6.1 ± 0.8
Bd	(ppm)	620 ± 70	397 ± 38	270 ± 25	0.70 ± 0.06
Cd	(%) (nnm)	1.02 ± 0.03	0.73 ± 0.03	5.62 ± 0.23	(0.79 ± 0.06)
Ce	(ppiii) (nnm)	104 + 14	793 + 78	(1.03)	(0.27) 290 + 50
Co	(ppm)	18 ± 2	46.8 ± 6.3	11.7 ± 2.0	< 7.5
Cr	(ppm)	69 ± 7	66.4 ± 7.6	31.2 ± 2.0	2.3 ± 0.8
Cs	(ppm)	3.84 ± 0.02	6.9 ± 1.2	5.19 ± 0.4	1.53 ± 0.10
Cu	(ppm)	30 ± 2	60.2 ± 9.6	66 ± 4	3.7 ± 1.9
Dy	(ppm)	< 3.2	6 ± 0.7	(1.8)	(7.8)
Er	(ppm)	< 2.2	3.6 ± 0.6	(1.0)	(4.4)
Eu	(ppm)	1.8 ± 0.2	1.60 ± 0.22	0.466 ± 0.110	3.6 ± 0.4
F	(ppm)	(620)	697 ± 88		(950)
Fe	(%)	4.91 ± 0.13	6.53 ± 0.15	2.03 ± 0.14	3.64 ± 0.14
Ga	(ppm)	25 ± 5	16.8 ± 1.8	8.8 ± 3.4	37 ± 1
Gd	(ppm)	< 9.8		(1.9)	(11)
Ht	(ppm)	7.9 ± 0.5	4.7 ± 0.8	1.37 ± 0.04	26.8 ± 1.7
Hg	(ppm)				
HO	(ppm)	< 1.0	1.2 ± 0.1	(0.38)	(1.7)
in V	(ppm) (%)	2 7 2 + 0 0 8	< 0.0002	1.24 + 0.12	(0.12)
N La	(//) (nnm)	2.72 ± 0.08	4.04 ± 0.03 385 ± 4.4	1.24 ± 0.13 18.4 ± 2.0	3.37 ± 0.00 170 + 30
La	(ppiii) (ppm)	(34)	38.3 ± 4.4 28.6 + 5.5	(130)	29 + 7
Lu Lu	(ppm)	(0.49)	540 + 140	(146)	(0.66)
Mg	(%)	1.00 ± 0.04	0.93 ± 0.02	2.69 ± 0.08	0.055 ± 0.010
Mn	(mag)	890 ± 70	325 ± 38	280 ± 40	1720 ± 140
Мо	(ppm)	(1.9)	134 ± 21	(36)	5.7 ± 1.4
Na	(%)	1.52 ± 0.09	0.274 ± 0.019	2.25 ± 0.24	6.61 ± 0.14
Nb	(ppm)	18 ± 3	11.4 ± 1.2	4.5 ± 1.3	250 ± 50
Nd	(ppm)	39 ± 6	36.6 ± 3.3	13.8 ± 3.0	74 ± 13
Ni	(ppm)	42 ± 11	99.5 ± 9.9	32 ± 6	< 8
Р	(ppp)	770 ± 180	480 ± 30	1400 ± 200	710 ± 20
Pb	(ppm)	(24)	27.9 ± 5.2	(37)	(17)
Pr	(ppm)	(8.7)		(3./)	(19.4)
RD C	(ppm)	129 ± 8 (580)	126 ± 3.9	/9 ± / (17500)	123 ± 8
Sh Sh	(ppiii) (ppm)	(380)	(4,5)	(17500)	(43) 1 69 + 0 11
Sc	(ppiii) (nnm)	17 + 2	(+, 3) 129 + 15	494 + 0.80	0.68 ± 0.01
Si	(%)	30.5 ± 0.6	23.0 + 0.3	13.4 + 0.6	27.8 + 0.4
Sm	(mag)	8.5 ± 1.0	7.7 ± 0.8	2.6 ± 0.3	15 ± 3
Sn	(ppm)	(3)	3.7 ± 1.2	(1.6)	10 ± 3
Sr	(ppm)	200 ± 20	75 ± 11	393 ± 70	730 ± 70
Та	(ppm)	1.1 ± 0.2	1.1 ± 0.1	(0.402)	18 ± 2
Tb	(ppm)	(1.3)	1.2 ± 0.2	0.297 ± 0.050	1.7 ± 0.4
Th	(ppm)	12 ± 1	10.5 ± 0.6	4.48 ± 0.03	33 ± 5
Ti	(%)	0.06 ± 0.03	0.425 ± 0.019	0.17 ± 0.03	0.091 ± 0.005
Tm	(ppm)	(0.72)	0.45 ± 0.08	(0.15)	(0.69)
U	(ppm)	(3)	48.8 ± 6.5	(5.31)	(9.12)
V	(ppm)	110 ± 30	160 ± 21	128 ± 9	(2)
W	(ppm)	(0.8)		(23)	(3.6)
Y Vh	(ppm)	<td>(3.3) 2.4 ± 0.5</td> <td>(10.3)</td> <td>(52) 4 2 ± 0.2</td>	(3.3) 2.4 ± 0.5	(10.3)	(52) 4 2 ± 0.2
10 7n	(ppm)	J.Z I.D 102 + 0	5.4 I U.5 61 + 7	(008.0) 0 + 0	4.5 ± U.3 2/1 ± 20
211 7r	(ppili) (ppm)	102 I 0 270 + 20	04 ± / 165 + 2/	00 ± 9 15 + 6	241 ± 20 1260 + 80
<u> </u>	(6600)	270 1 30	105 1 24	45 ± 0	1200 1 00

Table 29. Concentrations of elements in USGS Rocks - SDC-1, SDO-1, SGR-1 and STM-1

		۱ Dia	W-1 abas	e	W-2 Diabase	N Nep	KT-1 helin	ite	TLM-1 Tonalite
-1		Cen	trev	ille	Centreville	Knip	ppa,	ГХ	Lake View Mtn
Elemen	t/Units	(mean &	<u>k sto</u>	. dev.)	(mean & std. dev.)	(mean &	k std	. dev.)	(mean & std. dev.)
Ag	(ppm)	0.069	±	0.010	(0.043)				< 2
AĬ	(%)	7.93	±	0.14	8.18 ± 0.08	5.39	±	0.02	2.73
As	(ppm)	2.2	±	0.3	(1.2)				2.73
Au	(ppb)	4.3	±	1.2	(1.2)				< 4
В	(ppm)	13	±	4	(12)	== .			
Ва	(ppm)	162	±	5	163 ± 11	/24	±	31	/29
Ca	(%) (nnm)	7.82 0.17	± +	0.12	7.76 ± 0.06	9.44	Ŧ	0.03	4.82
Ce	(ppm)	23	+ +	2	(0.104) 228 + 15	127	+	4	28.2
Co	(ppm)	46	±	4	44.7 ± 2.1			•	19.4
Cr	(ppm)	120	±	14	92.5 ± 4.4	443	±	9	14.3
Cs	(ppm)	0.95	±	0.20	(0.99)	0.50	±	0.02	2.88
Cu	(ppm)	114	±	10	110 ± 4.9	49.2	±	2.8	
Dy	(ppm)	3.9	±	0.5	3.8 ± 0.8	6.74	±	0.24	(4.4)
Er	(ppm)	2.3	±	0.3	(2.5)	2.64	±	0.09	(2.6)
Eu	(ppm)	1.11	±	0.09	1.09 ± 0.06	3.85	±	0.16	0.992
F	(ppm)	230	±	40	(205)				
Fe	(%)	7.79	±	0.16	7.57 ± 0.15	9.32	±	0.035	5.22
Ga	(ppm)	17.4	±	1.3	$1/\pm 1$	10.0		0.4	(4.2)
Gu Llf	(ppm)	3.9	Ξ +	0.4	(3.5)	10.9	Ξ +	0.4	(4.3)
Нσ	(ppiii) (ppm)	0.21	+ +	0.5	2.35 ± 0.18	0.52	<u> </u>	0.20	5.87
Ho	(ppiii) (nnm)	0.21	∸ +	0.07	(0.76)	1 1 3	+	0.05	(0.95)
In	(ppm)	0.064	±	0.002		1.15		0.05	(0.55)
ĸ	(%)	0.530	±	0.034	0.52 ± 0.01	1.06	±	0.006	1.31
La	(ppm)	10.9	±	1.3	10.6 ± 0.6	64.2	±	2.7	12.3
Li	(ppm)	12	±	2	9.6 ± 0.5	17.8	±	0.6	
Lu	(ppb)	0.34	±	0.04	(0.33)	0.23	±	0.01	0.355
Mg	(%)	3.99	±	0.08	3.84 ± 0.03	8.64	±	0.03	
Mn	(ppm)	1300	±	125	1290 ± 31				
Mo	(ppm)	0.75	±	0.28	(0.6)	0.80	±	0.04	
Na	(%)	1.58	±	0.08	1.33 ± 0.03	2.58	±	0.015	2.21
ND	(ppm)	8	±	2	(7.9)	87.5	±	2.5	
	(ppm)	15	± +	3	12.2 ± 1.0	61.7	Ŧ	2.4	10.4
P	(ppiii) (nnm)	600	+ +	9 60	70 ± 3 610 + 520	4220	+	40	< 30
Ph	(ppm)	75	+	15	(9.3)	3 01	+	0.20	
Pr	(ppm)	3.2	+	0.4	(2.8)	15.0	+	0.6	(3.7)
Rb	(ppm)	21.4	±	0.3	21.2 ± 1.1	31.2	±	0.8	62.1
S	(ppm)	160	±	70	(79)				
Sb	(ppm)	1.05	±	0.12	(0.75)				(1.43)
Sc	(ppm)	35	±	2	35.6 ± 1.1	22.4	±	0.9	21.8
Si	(%)	24.54	±	0.14	24.62 ± 0.14	18.08	±	0.03	
Sm	(ppm)	3.5	±	0.3	3.33 ± 0.13				4.18
Sn	(ppm)	2.6	±	0.5		4000			
Sr	(ppm)	187	±	/	206 ± 2	1203	±	2/	307
та ть	(ppm)	0.50	±	0.07	(0.45)	4.85	±	0.18	0.39
	(ppiii) (ppm)	0.05	± +	0.07	(0.005)	1.51 7 1 Q	± +	0.05	2.5
Ti	(%)	0 641	+	0.4	0.635 ± 0.06	2 37	+	0.10	5.5
Tm	(nnm)	0.041	∸ +	0.030	(0.32)	0.31	∸ +	0.01	(0.37)
U	(ppm)	0.57	±	0.07	(0.47)	2.18	±	0.07	(1.22)
v	(ppm)	260	±	25	260 ± 12	293	±	8	(=/
W	(ppm)	0.48	±	0.07					< 3
Y	(ppm)	26	±	4	(22)	29.7	±	0.7	(26)
Yb	(ppm)	2.12	±	0.18	2.05 ± 0.20	1.78	±	0.05	2.41
Zn	(ppm)	84	±	6	80 ± 2	132	±	8	
Zr	(ppm)	100	±	9	93 ± 2	286	±	7	131

Table 30. Concentrations of elements in USGS Rocks - W-1, W-2, NKT-1 and TLM-1.

		JA-1	JA-2	JA-3	JB-2	JG-2	JG-3
		Andesite	Andesite	Andesite	Basalt	Granite	Granodiorite
Element	Units	(mean)	(mean)	(mean)	(mean)	(mean)	(mean)
Δ١	(%)	8 04	8 16	8 23	7 74	6 60	8 19
As	(nnm)	2 78	0.10		2 87	0.68	0.15
B	(ppm)	21.0	21.1	24.8	30	1.78	2.15
Ba	(ppm)	304	308	323	218	75.0	466
Ca	(%)	4 09	4 50	4 46	7 04	0.50	2 64
Ce	(nnm)	13 15	32.86	22.8	6 5 5	48 3	40.3
Co	(ppm)	11 5	28.3	21.0	37.6	3 62	11.5
Cr	(ppm)	7.5	424.8	66.2	26.6	6.37	22.4
Cs	(ppm)	0.627	4.78	2.08	0.80	6.79	1.78
Cu	(ppm)	42.5	29.0	43.4	222	0.49	6.81
Dv	(ppm)	4.75	2.85	3.01	3.87	10.5	2.59
Er	(ppm)	2.959	1.676	1.57	2.54	6.04	1.52
Eu	(ppm)	1.110	0.893	0.82	0.836	0.10	0.90
F	(ppm)	161	230		90	972	317
Fe	(%)	4.93	4.34	4.62	9,99	0.68	2.58
Ga	(ppm)	16.7	16.8	16.3	16.6	18.6	17.1
Gď	(ppm)	4.15	3.01	2.96	3.12	8.01	2.92
Hf	(ppm)	2.51	2.84	3.42	1.49	4.73	4.29
Но	(ppm)	1.032	0.591	0.51	0.863	1.67	0.38
K	(%)	0.66	1.50	1.17	0.35	3.91	2.19
La	(mag)	4.88	15.4	9.33	2.28	19.9	20.6
Li	(ppm)	10.4	29.2	14.5	8.08	42.2	20.9
Lu	(ppm)	0.454	0.255	0.32	0.389	1.22	0.26
Mg	(%)	0.93	4.58	2.24	2.67	0.02	1.08
Mn	(mgg)	1195	840	8100	1650	120	550
Мо	(ppm)	1.43	0.581	1.89	1.01	0.37	0.45
Na	(%)	2.90	2.31	2.37	1.52	2.63	2.94
Nb	(mag)	12	9.3	3.41	15	14.7	5.88
Nd	(ppm)	10.7	14.0	12.3	6.39	26.4	17.2
Ni	(ppm)	2.2	136	32.2	14.8	4.35	14.3
Р	(ppm)	696	640	510	423	10	530
Pb	(ppm)	5.86	18.9	7.7	5.25	31.5	11.7
Pr	(ppm)	2.08	3.69	2.4	1.13	6.20	4.7
Rb	(ppm)	11.2	69.8	36.7	6.4	301	67.3
Sb	(ppm)	0.23	0.15		2.61	0.057	0.08
Sc	(ppm)	27.9	18.93	22.0	54.1	2.42	8.76
Si	(%)	30.11	26.37	29.11	24.84	35.91	31.45
Sm	(ppm)	3.40	3.03	3.05	2.27	7.78	3.39
Sn	(ppm)	0.88	1.69		0.635	3.00	1.4
Sr	(ppm)	259	246	287	178	17.9	379
Та	(ppm)	0.098	0.652	0.27	0.039	2.76	0.70
Tb	(ppm)	0.727	0.478	0.52	0.586	1.62	0.46
Th	(ppm)	0.761	4.80	3.25	0.258	31.6	8.28
Ti	(ppm)	5094	4000	4200	6990	260	2900
Tm	(ppm)	0.445	0.255		0.393	1.16	0.24
U	(ppm)	0.34	2.18	1.18	0.15	11.3	2.21
V	(ppm)	106	120	169	572	3.78	70.1
W	(ppm)	0.49	1.15		0.31	23.0	14.1
Y	(ppm)	28.0	16.9	21.2	23.6	86.5	17.3
Yb	(ppm)	2.95	1.64	2.16	2.53	6.85	1.77
Zn	(ppm)	88.3	64.5	67.7	108	13.6	46.5
Zr	(ppm)	83.7	108.3	118	51.2	97.6	144

Table 31. Concentrations of elements in GSJ Rocks - JA-1, JA-2, JA-3, JB-2, JG-2, and JG-3.

		JCh-1	JDo-1	JLs-1	JF-1	JGb-2	JSy-1
		Chert	Dolomite	Limestone	Feldspar	Gabbro	Syenite
Element	Units	(mean)	(mean)	(mean)	(mean)	(mean)	(mean)
A I	(0/)	0 2004	0 0002	0.011	0.57	12 /2	12.26
AI	(70) (nnm)	0.5664	0.0092	0.011	9.57	12.45	12.20
AS B	(ppm)	0.307	0.114	0.145	1.92	0.90 1 Q	0.9
Ba	(ppm)	302	6 1 /	476	1750	4.5	14.5
Ca	(%)	0.0321	2/ 27	20 27	0.66	10.08	0 170
Cd	(nnm)	0.0021	0 644	0 159	0.00	0.087	0.175
Ce	(ppm)	5 21	2 49	0.133	4 19	3.0	2.6
Co	(ppm)	15 5	0 168	0.0825	0.12	25.8	0.16
Cr	(ppm)	7.04	7.93	3.37	5.48	125	2.0
Cs	(ppm)	0.243	0.070	0.020	2.09	0.51	0.69
Cu	(ppm)	15.3	1.41	0.268	0.82	11.4	1.3
Dy	(ppm)	0.378	0.814	0.0283	0.39	0.6	0.37
Er	(ppm)	0.233			0.31	0.36	0.30
Eu	(ppm)	0.059	0.176	0.0072	0.87	0.59	0.16
F	(ppm)	134	246	57.5	78	na	
Fe	(%)	0.0238	0.0145	0.0117	0.06	4.68	0.059
Ga	(ppm)				17.4	15.9	23.5
Gd	(ppm)	1.7	(1.3)	(0.03)	0.93	0.48	0.27
Hf	(ppm)	0.195	0.0897	0.126	1.18	0.25	1.2
Но	(ppm)	0.112	(0.42)		0.11	0.15	0.094
К	(%)	0.18	0.0019	0.0025	8.29	0.05	4.00
La	(ppm)	1.52	7.93	0.153	2.80	1.5	1.2
Li	(ppm)	6.48	(0.4)	(0.2)	9.81	15.7	15.3
Lu	(ppm)	0.0344	0.0494	0.022		0.062	0.076
Mg	(%)	0.0455	11.14	0.365	40	3.73	0.01
Mn	(ppm)	134	51	16	10	1000	18.6
Mo	(ppm)		(0.78)		0.3	0.42	0.048
Na	(%)	0.0226	0.0096	0.0014	2.50	0.68	8.97
ND	(ppm)	1.7	(0.4)	(1)	0.74	1.9	0.51
INCI NI:	(ppm)	2.05	5.25	(0.136)	1.40	1.8	1.2
	(ppm)	8.70 72	2.9	0.302	1.30	13.0	1.1
PDb	(ppm)	73		129	40	74 1 E	01
PU Dr	(ppm)	2.0	(0.95)	(0.7)	55.4 0.48	1.5	4.9
Rh	(ppm)	4.2J 8.61	(1 75)	(0.032)	266	2 9	66.3
Sh	(ppm)	0.01	(0.036)	(0.16)	0.55	0.12	0.15
Sc	(ppm)	0 979	0.136	0.0307	0.33	27	
Si	(%)	45 71	0.06	0.10	31 17	21 72	28.05
Sm	(ppm)	0.359	(0.788)	0.135	0.41	0.51	0.27
Sn	(ppm)				0.3	0.48	0.17
Sr	(ppm)	4.2	116	295	172	438	19.3
Та	(ppm)	0.182	(0.009)	(0.014)	0.079	0.29	0.013
Tb	(ppm)	0.0385	0.116	(0.0041)	0.076	0.15	0.057
Th	(ppm)	0.735	0.0429	0.0287	1.17	0.19	0.23
Ti	(ppm)	189	8.0	12.0	30	3480	9
Tm	(ppm)		(0.059)		0.04	0.059	0.053
U	(ppm)	0.736	0.858	1.75	0.33	0.041	0.20
V	(ppm)	10.4	3.14	3.59	5.43	174	2.1
W	(ppm)	92.3			0.8	1.6	0.06
Y	(ppm)	1.81	10.3	0.223	2.84	4.5	2.6
Yb	(ppm)	0.182	0.323	0.0164	0.35	0.39	0.41
Zn	(ppm)	7.93	35.4	3.19	4.41	48.5	3.2
Zr	(ppm)	11.5	6.21	(4.19)	38.6	11.6	/0.2

 Table 32. Concentrations of elements in GSJ Rocks - JCh-1, JDo-1, JLs-1, JF-1, JGb-1, and JSy-1.

	including - J	<u>IR-1, JR-2, JR-3</u>	<u>, GBW/115,</u>	IVIL AICI, allu	Pantenena.		
		JK-1	JR-2	JR-3	GBW/113	ARC	PAN
		Rhyolite	Rhyolite	Rhyolite	Rhyolite	Ubsidian	Obsidian
Element	Units	(mean)	(mean)	(mean)	(mean)	(mean)	(mean)
A I	(0/)	6 70	6 72	6.20	6 96	6 90	4.04
AI	(70)	0.79	0.75	0.29	0.00	10.30	4.04
AS	(ppm)	10.3	19.2	0.6	0.66	10.5	7.19
В	(ppm)	117	145		3.5		
ва	(ppm)	50.3	39.5	65.8	506	174	29
Ca	(%)	0.48	0.357	0.066	0.42	0.499	0.205
Ce	(ppm)	47.2	38.8	327	163	49.9	440
Со	(ppm)	0.83	0.46	0.98	2.4	3.89	0.17
Cr	(ppm)	2.83	3.1	3.5	7.3		
Cs	(ppm)	20.8	25.0	1.0	3.34	4.15	2.51
Cu	(ppm)	2.68	1.36	2.9	10.9	21.7	9.6
Dy	(ppm)	5.69	6.63		8.19	6.4	33.6
Er	(ppm)	3.61	4.36		4.31		
Eu	(ppm)	0.30	0.14	0.53	1.18	0.39	4.1
F	(ppm)	991	1109		1300		
Fe	(%)	0.62	0.54	3.16	2.14	1.41	6.09
Ga	(ppm)	16.1	17.9	36.6	20.5	23.5	35.4
Gd	(ppm)	5.06	5.83		9.47	6.18	31.2
Hf	(ppm)	4.51	5.14	40.3	10.8	3.97	46.2
Но	(ppm)	1.11	1.39		1.64		
K	(%)	3.66	3.69	3.56	4.51	4.30	3.46
La	(ppm)	19.7	16.3	179	82.7	21.3	230
 	(ppm)	61.4	79.2		12.8		
1	(ppm)	0 71	0.88	28	0.67	0.38	24
Μσ	(%)	0.07	0.02	0.03	0.096	0.07	0.02
Mn	(nnm)	770	870	640	1084	487	2300
Mo	(ppm)	3 25	2 25	0.49	2 46	30.4	13.6
Na	(%)	2 98	2.96	3 48	1 91	26	5 05
Nb	(nnm)	15.2	18 7	510	3/ 3	47.4	367
Nd	(ppm)	22.2	20.4	107	54.5 64.5	23.5	101 0
Ni	(ppm)	23.3	20.4	107	64.5	20.0	101.0
	(ppm)	1.07	50		04.5		
г Dh	(ppm)	10.2	30 21 E	22.0			
FU Dr	(ppm)	19.5	21.5	32.0 33.1	55.5 10 A		
PI Dh	(ppm)	5.50	4.75	35.1	10.4	248	106
KU Sh	(ppm)	257	505	455	213	17	190
SD	(ppm)	1.19	1.51		0.38	1.7	0.8
SC	(ppm)	5.07	5.59	0.5	5.15	4.00	0.66
SI	(%)	35.27	30.73	34.01	34.02	50	32.3
Sm	(ppm)	6.03	5.63	21.3	11.7	0.9	33.0
Sn	(ppm)	2.86	3.51	17.4	3.35	3.0 40	13.5
Sr	(ppm)	29.1	8.11	10.4	43	43	5
la	(ppm)	1.86	2.29	36.8	2.41	4.8	23.6
lb	(ppm)	1.01	1.10	4.29	1.51	1.09	5.46
lh 	(ppm)	26.7	31.4	112	27.1	16.6	35
Ti	(ppm)	660	400	1260	1800	620	1440
Tm	(ppm)	0.67	0.74		0.73		
U	(ppm)	8.88	10.9	21.1	4.83	5.6	10.6
V	(ppm)	7.0	3.0	4.2	3.8		
W	(ppm)	1.59			1.1		
Y	(ppm)	45.1	51.1	166	42.5	32.9	170
Yb	(ppm)	4.55	5.33	20.3	4.51	2.8	16.8
Zn	(ppm)	30.6	27.8	209	86.3	521	453
Zr	(ppm)	99.9	96.3	1494	403	103	2010

 Table 33. Concentrations of elements in GSJ, Chinese Rocks, and Mediterranean obsidian sources including - JR-1, JR-2, JR-3, GBW7113, Mt. Arci, and Pantelleria.

	Element-to-ox	ide	Multiplier	Oxide-to-element		ent	Multiplier	
Ag	\rightarrow	Ag ₂ O	1.0742	Ag ₂ O	\rightarrow	Ag	0.9309	
Al	\rightarrow	AI_2O_3	1.8895	AI_2O_3	\rightarrow	Al	0.5292	
As	\rightarrow	As_2O_3	1.3203	As_2O_3	\rightarrow	As	0.7574	
Au	\rightarrow	Au ₂ O ₃	1.1218	Au_2O_3	\rightarrow	Au	0.8914	
В	\rightarrow	B_2O_3	3.2120	B_2O_3	\rightarrow	В	0.3113	
Ba	\rightarrow	BaO	1.1165	BaO	\rightarrow	Ва	0.8957	
Be	\rightarrow	BeO	2.7754	BeO	\rightarrow	Be	0.3603	
Bi	\rightarrow	Bi ₂ O ₃	1.1148	Bi ₂ O ₃	\rightarrow	Bi	0.8970	
С	\rightarrow	CO ₂	3.6642	CO ₂	\rightarrow	С	0.2729	
Ca	\rightarrow	CaO	1.3992	CaO	\rightarrow	Са	0.7147	
Ca	\rightarrow	CaCO ₃	2.4972	CaCO ₃	\rightarrow	Са	0.4004	
Cd	\rightarrow	CdO	1.1423	CdO	\rightarrow	Cd	0.8754	
Ce	\rightarrow	CeO ₂	1.2284	CeO ₂	\rightarrow	Ce	0.8141	
Со	\rightarrow	CoO	1.2715	CoO	\rightarrow	Со	0.7865	
Cr	\rightarrow	Cr_2O_3	1.4616	Cr_2O_3	\rightarrow	Cr	0.6842	
Cs	\rightarrow	Cs ₂ O	1.0602	Cs ₂ O	\rightarrow	Cs	0.9432	
Cu	\rightarrow	CuO	1.2518	CuO	\rightarrow	Cu	0.7988	
Dy	\rightarrow	Dy ₂ O ₃	1.1477	Dy ₂ O ₃	\rightarrow	Dy	0.8713	
Er	\rightarrow	Er_2O_3	1.1435	Er_2O_3	\rightarrow	Er	0.8745	
Eu	\rightarrow	Eu ₂ O ₃	1.1579	Eu_2O_3	\rightarrow	Eu	0.8636	
Fe	\rightarrow	FeO	1.2865	FeO	\rightarrow	Fe	0.7773	
Fe	\rightarrow	Fe ₂ O ₃	1.4298	Fe_2O_3	\rightarrow	Fe	0.6994	
FeO	\rightarrow	Fe ₂ O ₃	1.1114	Fe_2O_3	\rightarrow	FeO	0.8998	
Ga	\rightarrow	Ga_2O_3	1.3442	Ga_2O_3	\rightarrow	Ga	0.7439	
Gd	\rightarrow	Gd_2O_3	1.1526	Gd_2O_3	\rightarrow	Gd	0.8676	
Ge	\rightarrow	GeO ₂	1.4398	GeO ₂	\rightarrow	Ge	0.6945	
Н	\rightarrow	H ₂ O	8.9373	H ₂ O	\rightarrow	Н	0.1119	
Hf	\rightarrow	HfO ₂	1.1793	HfO ₂	\rightarrow	Hf	0.8480	
Но	\rightarrow	Ho ₂ O ₃	1.1455	Ho ₂ O ₃	\rightarrow	Но	0.8730	
In	\rightarrow	In ₂ O	1.0697	In ₂ O	\rightarrow	In	0.9348	
Ir	\rightarrow	IrO ₂	1.1665	IrO ₂	\rightarrow	Ir	0.8573	
К	\rightarrow	K ₂ O	1.2046	K ₂ O	\rightarrow	К	0.8302	
La	\rightarrow	La_2O_3	1.1728	La_2O_3	\rightarrow	La	0.8527	
Li	\rightarrow	Li ₂ O	2.1526	Li ₂ O	\rightarrow	Li	0.4646	
Lu	\rightarrow	Lu_2O_3	1.1372	Lu_2O_3	\rightarrow	Lu	0.8794	
Mg	\rightarrow	MgO	1.6583	MgO	\rightarrow	Mg	0.6030	
Mn	\rightarrow	MnO	1.2912	MnO	\rightarrow	Mn	0.7745	
Мо	\rightarrow	MoO ₃	1.5003	MoO ₃	\rightarrow	Мо	0.6665	
Na	\rightarrow	Na ₂ O	1.3480	Na ₂ O	\rightarrow	Na	0.7418	
Nb	\rightarrow	NbO ₂	1.3444	NbO ₂	\rightarrow	Nb	0.7438	

Table 34.	Flement-to-oxide and	oxide-to-element	conversion factors.
	Liement-to-oxide and	UNIGE-LO-CICITICIT	conversion factors.

Element-to-oxide			Multiplier	Oxide-to-element			Multiplier
						•	
Nd	\rightarrow	Nd_2O_3	1.1664	Nd_2O_3	\rightarrow	Nd	0.8573
Ni	\rightarrow	NiO	1.2726	NiO	\rightarrow	Ni	0.7858
Р	\rightarrow	P_2O_5	2.2914	P_2O_5	\rightarrow	Р	0.4364
Pb	\rightarrow	PbO	1.0772	PbO	\rightarrow	Pb	0.9283
Pd	\rightarrow	PdO	1.1504	PdO	\rightarrow	Pd	0.8693
	,	D= 0	4 4 7 9 9		,		0.0545
Pr	\rightarrow	Pr_2O_3	1.1703	Pr_2O_3	\rightarrow	Pr	0.8545
Pt	\rightarrow	PtO ₂	1.1640	PtO ₂	\rightarrow	Pt	0.8591
Rb	\rightarrow	Rb ₂ O	1.0936	Rb ₂ O	\rightarrow	Rb	0.9144
Re	\rightarrow	ReO ₂	1.1747	ReO ₂	\rightarrow	Re	0.8513
Rh	\rightarrow	Rh_2O_3	1.2332	Rh_2O_3	\rightarrow	Rh	0.8109
Ru	\rightarrow	Ru ₂ O ₂	1.2375	Ru ₂ O ₂	\rightarrow	Ru	0.8181
S	\rightarrow	SO ₂	2,4970	SO ₂	\rightarrow	S	0.4005
Si	\rightarrow	SiO	2 1394	SiO	\rightarrow	Si	0 4674
Sh	\rightarrow	Sh ₂ O ₂	1 1971	Sh ₂ O ₂))	Sh	0.8354
50	, 	Sc. O.	1 5330	SC203	, 	Sc	0.6519
50		36203	1.5555	56763		50	0.0315
Se	\rightarrow	SeO ₂	1.4053	SeO ₂	\rightarrow	Se	0.7116
Sm	\rightarrow	Sm_2O_3	1.1596	Sm_2O_3	\rightarrow	Sm	0.8624
Sn	\rightarrow	SnO ₂	1.2696	SnO ₂	\rightarrow	Sn	0.7876
Sr	\rightarrow	SrO	1.1826	SrO	\rightarrow	Sr	0.8456
Та	\rightarrow	Ta ₂ O ₅	1.2211	Ta ₂ O ₅	\rightarrow	Та	0.8189
-	,		4 4 5 4 0		,	-	0.0000
	\rightarrow		1.1510		\rightarrow		0.8688
1h 	\rightarrow		1.1379		\rightarrow	Ih —:	0.8/88
Ti	\rightarrow		1.6685		\rightarrow	Ti	0.5993
Tm	\rightarrow	Tm ₂ O ₃	1.1421	Tm_2O_3	\rightarrow	Tm	0.8756
U	\rightarrow	UO ₂	1.1344	UO ₂	\rightarrow	U	0.8815
V	\rightarrow	V ₂ O ₅	1.7852	V ₂ O ₅	\rightarrow	V	0.5602
W	\rightarrow	ŴO ₂	1.1741	ŴO ₂	\rightarrow	W	0.8517
Y	\rightarrow	Y ₂ O ₂	1.2700	Y ₂ O ₂	\rightarrow	Y	0.7874
Yb	\rightarrow	Yb ₂ O ₂	1.1387	Yb ₂ O ₂	\rightarrow	Yb	0.8782
Zn	\rightarrow	ZnO	1.2446	ZnO	\rightarrow	Zn	0.8085
Zr	\rightarrow	ZrO ₂	1.3508	ZrO ₂	\rightarrow	Zr	0.7403

Table 34. Element-to-oxide and oxide-to-element conversion factors.

Oxide	AGV-1	AGV-2	BCR-1	BCR-2	BIR-1
Al ₂ O ₃	17.11	17.03	13.56	13.48	15.51
CaO	4.89	5.15	6.98	7.11	13.29
Fe_2O_3 total	6.76	6.78	13.43	13.77	11.40
K ₂ O	2.94	2.90	1.73	1.77	0.03
MgO	1.51	1.80	3.47	3.60	9.69
MnO	0.097	0.100	0.184	0.197	0.173
Na ₂ O	4.25	4.20	3.33	3.12	1.83
P_2O_5	0.493	0.483	0.365	0.359	0.030
SiO ₂	59.38	59.14	54.53	54.00	47.79
TiO ₂	1.05	1.05	2.24	2.27	0.96
Trace element sum	0.34		0.32		0.14
L.O.I. (calc)	1.59		1.67		0.74
Total	100.35	100.00	101.34	100.00	101.06

Table 35.	Concentrations of	major	oxides in U	ISGS and N	NIST	rocks in	weight (%).
-----------	--------------------------	-------	-------------	------------	------	----------	-----------	----

Oxide	BHVO-1	BHVO-2	DTS-1	DTS-2b	DNC-1
Al ₂ O ₃	13.69	13.44	0.20	0.45	18.30
CaO	11.40	11.40	0.17	0.12	11.27
Fe ₂ O ₃ total	12.32	12.39	8.68	7.76	9.93
K ₂ O	0.53	0.51	0.00		0.23
MgO	7.21	7.26	49.50	49.40	10.05
MnO	0.169	0.169	0.116		0.149
Na ₂ O	2.31	2.22	0.01		1.87
P ₂ O ₅	0.277	0.269	0.001		0.085
SiO ₂	49.79	49.60	40.40	39.40	47.04
TiO ₂	2.74	2.73			0.48
Trace element sum	0.26		0.66		0.18
L.O.I. (calc)	-0.71		-0.28		0.60
Total	100.08	100.00	99.77	100.00	100.18

Oxide	G-1	G-2	GSP-1	GSP-2	MAG-1
Al ₂ O ₃	14.23	15.31	15.16	14.90	16.37
CaO	1.38	1.91	2.04	2.10	1.37
Fe_2O_3 total	1.94	2.64	4.30	4.90	6.80
K ₂ O	5.48	4.50	5.51	5.38	3.55
MgO	0.39	0.75	0.99	0.96	3.00
MnO	0.028	0.031	0.040		0.098
Na ₂ O	3.33	4.05	2.80	2.78	3.83
P_2O_5	0.087	0.129	0.280	0.290	0.163
SiO ₂	72.46	68.74	67.37	66.60	50.36
TiO ₂	0.25	0.48	0.66	0.66	0.75
Trace element sum	0.34	0.48	0.81	0.93	3.90
L.O.I. (calc)	0.35	0.53	0.46	0.50	10.14
Total	100.27	99.82	100.41	100.00	100.33

Oxide	PCC-1	QLO-1	RGM-1	RGM-2	SCo-1
Al ₂ O ₃	0.74	16.18	13.83	13.96	13.67
CaO	0.52	3.17	1.18	1.21	2.62
Fe_2O_3 total	8.26	4.35	1.87	1.89	5.14
K ₂ O	0.01	3.60	4.29	4.20	2.77
MgO	43.23	1.00	0.28	0.29	2.72
MnO	0.119	0.093	0.039	0.039	0.053
Na ₂ O	0.03	4.20	4.09	3.89	0.90
P_2O_5	0.002	0.254	0.049	0.04	0.206
SiO ₂	41.88	65.55	73.12	73.38	62.78
TiO ₂	0.01	0.62	0.27	0.26	0.63
Trace element sum	0.55	0.30	0.26	0.30	0.32
L.O.I. (calc)	4.72	0.23	0.57	0.60	8.34
Total	100.02	99.55	100.01	99.85	100.15

Table 35. Concentrations of major oxides in USGS and NIST rocks in weight (%) [continued].

Oxide	SDC-1	SDO-1	SGR-1	STM-1	W-1
Al ₂ O ₃	15.75	12.27	6.52	18.39	14.99
CaO	1.40	1.05	8.38	1.09	10.94
Fe ₂ O ₃ total	6.90	9.34	3.03	5.22	11.14
K ₂ O	3.28	3.35	1.66	4.28	0.64
MgO	1.69	1.54	4.44	0.10	6.62
MnO	0.114	0.042	0.034	0.220	0.168
Na ₂ O	2.05	0.38	2.99	8.94	2.13
P_2O_5	0.158	0.110	0.328	0.158	0.140
SiO ₂	65.85	49.28	28.24	59.64	52.55
TiO ₂	1.01	0.71	0.26	0.14	1.07
Trace element sum	0.33	5.55	1.90	0.53	0.20
L.O.I. (calc)	1.57	21.70	31.04	1.48	-0.23
Total	100.10	105.32	88.82	100.18	100.36

Oxide	W-2	SRM-278	SRM-679	SRM-688	SRM-2704
Al ₂ O ₃	15.38	14.15	20.80	17.36	11.54
CaO	10.91	0.98	0.23	12.17	3.64
Fe ₂ O ₃ total	10.80	2.04	12.94	10.35	5.88
K ₂ O	0.62	4.16	2.93	0.19	2.41
MgO	6.43	0.23	1.25	8.40	1.99
MnO	0.166	0.052	0.223	0.167	0.072
Na ₂ O	2.20	4.84	0.17	2.15	0.74
P_2O_5	0.136	0.036	0.170	0.134	0.229
SiO ₂	52.57	73.05	52.07	48.40	62.21
TiO ₂	1.06	0.25	0.96	1.17	0.76
Trace element sum	0.18	0.32	0.12	0.19	0.62
L.O.I. (calc)	0.59	0.33	8.00		12.28
Total	100.66	100.44	99.70	100.02	102.37

Oxide	JA-1	JA-2	JB-2	JG-2	JG-3
Al ₂ O ₃	15.19	15.41	14.62	12.47	15.48
CaO	5.72	6.29	9.85	0.70	3.69
Fe ₂ O ₃ total	7.05	6.21	14.28	0.97	3.69
K ₂ O	0.78	1.81	0.42	4.71	2.64
MgO	1.54	7.60	4.43	0.04	1.79
MnO	0.154	0.108	0.213	0.016	0.071
Na ₂ O	3.91	3.11	2.05	3.54	3.96
P ₂ O ₅	0.159	0.146	0.097	0.002	0.122
SiO ₂	64.43	56.42	53.14	76.83	67.29
TiO ₂	0.85	0.66	1.17	0.04	0.48
Trace element sum					
L.O.I. (calc)		2.37			
Total	99.31	100.13	100.55	99.32	99.21

Table 36. Concentrations of major oxides in GSJ and Chinese rocks in weight (%).

Oxide	JGb-2	JDo-1	JLs-1	JCh-1	JF-1
Al ₂ O ₃	23.48	0.02	0.02	0.73	18.08
CaO	14.10	33.96	55.09	0.04	0.93
Fe ₂ O ₃ total	6.69	0.02	0.02	0.36	0.08
K ₂ O	0.06			0.22	9.99
MgO	6.18	18.470	0.606	0.075	0.006
MnO	0.130	0.007	0.002	0.017	0.001
Na ₂ O	0.92	0.01		0.03	3.37
P_2O_5	0.017	0.034	0.030	0.017	0.010
SiO ₂	46.47	0.22	0.12	97.81	66.69
TiO ₂	0.56			0.03	0.01
CO ₂		46.50	43.58	0.03	
Trace element sum					
L.O.I. (calc)					
Total	98.61	99.24	99.47	99.39	99.16

Oxide	JR-1	JR-2	JR-3	JSy-1	GBW07113
Al ₂ O ₃	12.83	12.82	12.10	23.17	12.96
CaO	0.67	0.45	0.09	0.25	0.59
Fe ₂ O ₃ total	0.89	0.86	4.75	0.08	3.24
K ₂ O	4.41	4.45	4.33	4.82	5.43
MgO	0.12	0.05	0.05	0.016	0.16
MnO	0.099	0.110	0.085	0.002	0.14
Na ₂ O	4.02	4.03	4.68	10.74	2.57
P_2O_5	0.021	0.010	0.009	0.014	0.045
SiO ₂	75.45	75.65	72.76	60.02	72.78
TiO ₂	0.11	0.090	0.210	0.00	0.30
Trace element sum					
L.O.I. (calc)					
Total	98.62	98.52	99.06	99.12	98.22

Element	Units	North American Shale Composite	Post-Archaen Australian Shale	Marine Shale Group: Black Shale	Upper Crust	Average Singo Granite
		(NASC)	(PAAS)	(MSG:BSC)	(UC)	(SINGO)
	(0()	0.04	40.0	0.04		7.05
AI	(%)	8.94	10.0	8.21	8.04	7.05
As	(ppm)	28.4		29	1.50	
Au	(ppm)			0.02		
ва	(ppm)	636	650	1120	550	552
Br	(ppm)	0.69		4.0		
Ca	(%)	2.59	0.93	1./1	3.00	0.78
Ce	(ppm)	66.7	80	80	64	101
Co	(ppm)	25.7	23	17.0	10.0	5.81
Cr	(ppm)	125	110	111	35.0	27.7
Cs	(ppm)	5.16	15	9.0	3./	7.09
Cu	(ppm)		50		25	
Dy	(ppm)		4.40	4.85		
Eu	(ppm)	1.18	1.10	1.27	0.88	1.30
Fe	(%)	3.94	5.05	3.68	3.50	1.82
Ga	(ppm)		20	22		
Gd	(ppm)		4.70		3.80	8.56
Ht	(ppm)	6.30	5.00	4.30	5.80	5.45
In	(ppm)			0.21		
K	(%)	3.30	3.07	2.99	2.82	4.04
La	(ppm)	31.1	38.0	44.0	30.0	56.5
Lu	(ppm)	0.46	0.43	0.47	0.32	0.90
Mg	(%)	1.72	1.33	1.04	1.33	0.36
Mn	(ppm)	465	850	383	620	620
Na	(%)	0.85	0.89	0.53	2.89	2.63
Nb	(ppm)	13	19		25	20
Nd	(ppm)	27.4	32.0	55.0	26.0	39.6
Ni	(ppm)	58	55		20	11
Р	(ppm)	570	700			570
Rb	(ppm)	125	160	131	112	348
Sb	(ppm)	2.09		5.7	0.20	0.30
Sc	(ppm)	14.9	16.0	15.6	11.0	8.37
Si	(%)	30.29	29.4		30.9	33.96
Sm	(ppm)	5.59	5.60	6.20	4.50	7.43
Sr	(ppm)	142	200	310	350	103
Та	(ppm)	1.12		0.90	2.2	1.87
Tb	(ppm)	0.85	0.77	0.95	0.64	1.44
Th	(ppm)	12.3	14.6	11.6	10.7	28.8
Ti	(%)	0.42	0.60	0.43	0.30	0.25
Tm	(ppm)		0.40		0.33	0.56
U	(ppm)	2.66	3.10	15.2	2.80	11.8
V	(ppm)	130	150	500	60	28
W	(ppm)	2.1	2.7	3.3		
Yb	(ppm)	35	27		22	57
Yb	(ppm)	3.06	2.80	3.10	2.20	5.70
Zn	(ppm)		85.0	310	71.0	40.2
Zr	(ppm)	200	210	230	190	159

Table 37.	Concentrations of	elements in	well-known	shale and	granite com	posites.
-----------	--------------------------	-------------	------------	-----------	-------------	----------

Atomic				Chondrite Norm	alizing Valu	es in ppm	
Number		Element	(a)	(b)	(c)	(d)	(e)
39	Y	Yttrium		1.96 ± .09			2.12
57	La	Lanthanum	0.315	0.330 ± .013	0.34	0.329	0.319
58	Ce	Cerium	0.813	0.880 ± .010	0.87	0.865	0.82
59	Pr	Prasedymium		0.112 ± .003	0.12		0.121
60	Nd	Neodymium	0.597	0.600 ± .010	0.64	0.63	0.015
61	Pm	Promethium					
62	Sm	Samarium	0.192	0.181 ± .006	0.195	0.203	0.2
63	Eu	Europium	0.072	0.069 ± .001	0.073	0.077	0.076
64	Gd	Gadolinium	0.259	0.249 ± .011	0.26	0.276	0.267
65	Tb	Terbium		0.047 ± .001	0.047		0.049
66	Dy	Dypsrosium	0.325		0.3	0.343	0.33
67	Но	Holium		0.070 ± .001	0.078		0.076
68	Er	Erbium	0.213	0.200 ± .005	0.2	0.225	0.216
69	Tm	Thulium		0.030 ± .002	0.032		0.033
70	Yb	Ytterbium	0.208	0.200 ± .007	0.22	0.22	0.221
71	Lu	Lutetium	0.032	0.034 ± .002	0.034	0.034	0.033

 Table 38. Chondritic (primordial) abundances used for normalizing REE concentrations.

Column:

(a) Values for Leedy Chondrites by Masuda et al. (1973) divided by 1.20

(b) Values for a composite of nine chondrites from Haskin et al. (1968)

(c) Values from J.C. Laul (1979)

(d) Values from Nakamura (1974)

(e) Values from Anders & Grevesse (1989) multiplied by 1.3596

		Old Ohio R	ed Clay	New Ohio	o R	ed Clay	Ohio G	old	l Clay
		MURR va	alues	MURR values		lues	MURF	R va	lues
Element	Units	(n = 9	9)	(n =	: 27	5)	(n	= 5	5)
Al	(%)	8.89 ±	0.15	9.49	±	0.28	16.30	±	0.11
As	(ppm)	13 ±	0.4	14.8	±	1.1	12.4	±	1.3
Ва	(ppm)	614 ±	26	611	±	34	367	±	17
Ca	(%)	0.38 ±	0.04	0.14	±	0.02	0.08	±	0.03
Ce	(ppm)	106.1 ±	1.9	112.3	±	2.9	109.0	±	3.0
Со	(ppm)	20.2 ±	0.3	22.6	±	0.7	4.8	±	0.1
Cr	(mgg)	89 ±	2	90	- +	2	177	±	4
Cs	(ppm)	10.3 +	0.2	10.1	+	0.2	9.9	+	0.1
Dv	(mga)	6.03 ±	0.12	7.02	±	0.25	6.71	±	0.12
Eu	(mga)	1.54 ±	0.03	1.72	±	0.05	1.13	±	0.03
	(66)				-			-	
Fe	(%)	5.19 ±	0.08	5.05	±	0.18	0.99	±	0.02
Hf	(ppm)	7.11 ±	0.40	7.34	±	0.23	11.9	±	0.2
К	(%)	3.31 ±	0.03	3.45	±	0.12	1.29	±	0.05
La	(ppm)	48.0 ±	0.5	50.1	±	1.1	61.6	±	0.8
Lu	(ppm)	0.55 ±	0.03	0.59	±	0.02	0.80	±	0.03
Mn	(ppm)	252 ±	8	263	±	11	30	±	1
Na	(ppm)	1290 ±	20	1380	±	40	881	±	9
Nd	(ppm)	40 ±	2	47	±	8	39	±	2
Ni	(ppm)	78 ±	21	75	±	19	18	±	24
Rb	(ppm)	176 ±	3	181	±	6	100	±	3
Sb	(ppm)	1.34 ±	0.08	1.11	±	0.06	1.47	±	0.04
Sc	(ppm)	17.8 ±	0.3	18.3	±	0.6	25.3	±	0.5
Sm	(ppm)	7.99 ±	0.30	9.25	±	0.47	6.90	±	0.10
Sr	(ppm)	50 ±	14	60	±	23	586	±	29
Та	(ppm)	1.48 ±	0.06	1.48	±	0.05	3.56	±	0.07
ть	(nnm)	1 0 2 +	0.06	1 24	т	0.21	1 00		0.02
ט ו דה	(ppm)	1.UZ ±	0.00	1.24	± ⊥	0.51	1.00 22 E	± ⊥	0.05
т:	(%) (%)	14.4 ± 057 ±	0.5	14.9 0.62	± +	0.4	32.3 1 26	1 +	0.7
11	(mm)	0.57 ± 2 Q2 +	0.02	2 20	- +	0.05	1.30 2.20	- +	0.00
v	(ppm)	2.50 ± 198 +	3	202	- +	60	192	- +	60
v	(6600)	170 1	5	205	-	5	172	Ť	0
Yb	(ppm)	3.94 ±	0.12	4.31	±	0.21	5.10	±	0.14
Zn	(ppm)	97 ±	16	94	±	13	56	±	3
Zr	(ppm)	166 ±	10	181	±	22	300	±	14

Table 39. Concentrations of elements in Old Ohio Red, New Ohio Red, and Ohio Gold clays.

		Talc Free	Clay	Terraco	otta	Clay	Piker	ni (Clay
		MURR va	lues	MURR	t va	lues	MURR	l va	lues
Element	Units	(n = 5)		(n	= 5)		(n :	= 14	4)
Al	(%)	11.9 ±	0.2	9.9	±	0.2	7.7	±	0.1
As	(ppm)	2.8 ±	0.5	9.9	±	0.7	31.7	±	1.4
Ва	(ppm)	375 ±	11	577	±	11	199	±	52
Ca	(%)	0.23 ±	0.05	0.24	±	0.02	10.85	±	0.22
Ce	(ppm)	84.5 ±	1.1	109.9	±	3.4	68.3	±	1.6
Со	(ppm)	4.1 ±	0.1	17.7	±	0.5	23.9	±	0.7
Cr	(ppm)	103 ±	2	90	±	2	156	±	3
Cs	(ppm)	8.03 ±	0.05	8.81	±	0.17	6.18	±	0.09
Dy	(ppm)	4.95 ±	0.22	6.47	±	0.28	5.41	±	0.36
Eu	(ppm)	1.10 ±	0.02	1.55	±	0.04	1.50	±	0.04
Fe	(%)	1.04 ±	0.02	4.46	±	0.12	4.83	±	0.08
Hf	(ppm)	9.46 ±	0.10	7.78	±	0.21	4.67	±	0.12
К	(%)	1.27 ±	0.10	3.09	±	0.04	1.59	±	0.11
La	(ppm)	47.4 ±	0.8	51.7	±	0.9	38.9	±	0.9
Lu	(ppm)	0.50 ±	0.02	0.58	±	0.01	0.45	±	0.03
Mn	(ppm)	57 ±	2	225	±	3	869	±	65
Na	(%)	0.57 ±	0.01	0.13	±	0.01	0.55	±	0.12
Nd	(ppm)	33.6 ±	2.5	44.1	±	2.1	34.6	±	3.4
Ni	(ppm)	7 ±	16	65	±	16	121	±	29
Rb	(ppm)	69 ±	1	152	±	4	96	±	4
Sb	(ppm)	0.90 ±	0.02	1.24	±	0.04	1.68	±	0.06
Sc	(ppm)	14.9 ±	0.2	17.7	±	0.4	17.9	±	0.4
Sm	(ppm)	6.05 ±	0.10	8.58	±	0.12	7.04	±	0.17
Sr	(ppm)	141 ±	8	71	±	17	77	±	40
Та	(ppm)	2.10 ±	0.02	1.82	±	0.04	1.11	±	0.03
Tb	(ppm)	0.80 ±	0.03	1.09	±	0.06	0.96	±	0.07
Th	(ppm)	14.4 ±	0.2	15.5	±	0.3	10.3	±	0.2
Ti	(%)	0.85 ±	0.04	0.81	±	0.04	0.47	±	0.09
U	(ppm)	4.78 ±	0.17	3.32	±	0.25	2.63	±	0.29
V	(ppm)	132 ±	4	196	±	4	126	±	7
Yb	(ppm)	3.81 ±	0.26	4.48	±	0.33	3.19	±	0.17
Zn	(ppm)	47 ±	6	87	±	6	112	±	10
Zr	(ppm)	241 ±	8	195	±	14	131	±	21

\mathbf{T} and \mathbf{T} . Concentrations of elements in rate free, renacotia, and rikering days	Table 40.	Concentrations	of elements in	Talc Free.	Terracotta.	and Pikermi clavs.
---	-----------	----------------	----------------	------------	-------------	--------------------

		R.E. Jones	MURR values	Kuleff & Pernicka (2002)
Element	Units	(private comm.)	(n = 10)	(n = 3)
AI	(%)		9.21 ± 0.21	
As	(ppm)		26.3 ± 8.8	26.6 ± 1.2
Ва	(ppm)	546 ± 33	557 ± 45	509 ± 34
Ca	(%)		3.53 ± 0.17	
Ce	(ppm)	71 ± 2	76.5 ± 2.9	75.2 ± 2.2
Со	(ppm)	22.8 ± 0.2	19.8 ± 0.4	18.5 ± 0.5
Cr	(ppm)	160 ± 30	150 ± 6	149 ± 3
Cs	(ppm)		7.50 ± 0.22	8.0 ± 0.2
Dy	(ppm)		5.28 ± 0.22	
Eu	(ppm)	1.24 ± 0.24	1.40 ± 0.02	1.40 ± 0.03
Fe	(%)	4.34 ± 0.28	4.43 ± 0.09	4.37 ± 0.09
Hf	(ppm)	4.8 ± 0.7	5.54 ± 0.23	5.1 ± 0.1
К	(%)	2.44 ± 0.23	2.73 ± 0.17	2.68 ± 0.17
La	(ppm)	38.7 ± 5.1	37.4 ± 0.8	37.2 ± 1.2
Lu	(ppm)		0.43 ± 0.02	0.40 ± 0.02
Mn	(ppm)		954 ± 25	
Na	(%)	1.06 ± 0.11	1.09 ± 0.02	1.16 ± 0.06
Nd	(ppm)	43 ± 6	34 ± 3	40 ± 8
Ni	(ppm)		91 ± 12	
Rb	(ppm)	120 ± 18	132 ± 4	116 ± 3
Sb	(ppm)		2.17 ± 0.07	2.42 ± 0.23
Sc	(ppm)	16.1 ± 1.1	17.7 ± 0.4	19.2 ± 0.4
Sm	(ppm)	6.6 ± 0.4	6.82 ± 0.21	6.9 ± 0.2
Sr	(ppm)		72 ± 34	
Та	(ppm)		1.07 ± 0.04	1.18 ± 0.03
Tb	(ppm)		0.93 ± 0.11	0.87 ± 0.06
Th	(ppm)	13.8 ± 1.1	12.2 ± 0.4	12.3 ± 0.4
Ti	(%)		0.50 ± 0.08	
U	(ppm)		2.31 ± 0.31	2.4 ± 0.2
V	(ppm)		116 ± 9	
Yb	(ppm)	2.4 ± 0.8	3.11 ± 0.12	3.1 ± 0.10
Zn	(ppm)	99 ± 11	109 ± 6	
Zr	(ppm)	182 ± 5	143 ± 17	223 ± 31

Table 41. Concentrations of elements in Lefkandi Brick Clay.

		SARM-69	MURR values	
Element	Units	Certificate	(n = 10)	
Al	(%)	7.62 ± 0.105	7.45 ± 0.18	
As	(ppm)		4.10 ± 0.71	
Ba	(ppm)	518 ± 19	507 ± 31	
Ca	(%)	1.69 ± 0.03	1.70 ± 0.11	
Ce	(ppm)	67 ± 3	66.9 ± 1.9	
Со	(ppm)	28.0 ± 1.0	26.5 ± 0.4	
Cr	(ppm)	223 ± 8	216 ± 5	
Cs	(ppm)		2.86 ± 0.11	
Dy	(ppm)		4.90 ± 0.30	
Eu	(ppm)		1.30 ± 0.03	
Fe	(%)	5.02 ± 0.06	4.94 ± 0.53	
Hf	(ppm)		8.39 ± 0.31	
К	(%)	1.63 ± 0.03	1.54 ± 0.17	
La	(ppm)		29.5 ± 0.4	
Lu	(ppm)		0.41 ± 0.01	
Mn	(ppm)	999 ± 15	1061 ± 37	
Na	(%)	0.59 ± 0.02	0.56 ± 0.02	
Nb	(ppm)	(9)		
Nd	(ppm)	30 ± 3	28 ± 1	
Ni	(ppm)	53 ± 2	41 ± 31	
Pb	(ppm)	(14)		
Rb	(ppm)	66 ± 4	68 ± 2	
Sb	(ppm)		0.44 ± 0.06	
Sc	(ppm)	20 ± 19	19.5 ± 0.5	
Sm	(ppm)	±	6.07 ± 0.14	
Sr	(ppm)	109 ± 30	67 ± 48	
Та	(ppm)		0.64 ± 0.03	
Tb	(ppm)		1.02 ± 0.30	
Th	(ppm)	9 ± 1	8.76 ± 0.29	
Ti	(%)	0.47 ± 0.05	0.52 ± 0.75	
	. /			
U	(ppm)		2.14 ± 0.23	
V	(ppm)	157 ± 10	160 ± 6	
Y	(ppm)	(29)		
Yb	(ppm)		2.88 ± 0.10	
Zn	(ppm)	68 ± 3	74 ± 5	
Zr	(ppm)	271 ± 50	195 ± 60	

 Table 42. Concentrations of elements in SARM-69 Ceramic standard.

			MURR values	Conversion Factors
Element	Units	Hughes (2007) publication	(n = 17)	BM-to-MURR
Al	(%)		9.94 ± 0.18	1.000
As	(ppm)	12.0 ± 0.5	10.1 ± 1.8	0.834
Ва	(ppm)	580 ± 18	598 ± 22	1.031
Са	(%)		0.201 ± 0.037	1.000
Ce	(ppm)	106.2 ± 3.7	107.3 ± 3.9	1.011
Со	(ppm)	9.37 ± 0.21	9.24 ± 0.17	0.986
Cr	(ppm)	145 ± 3	130 ± 3	0.900
Cs	(ppm)	35.4 ± 0.9	33.8 ± 0.7	0.955
Dy	(ppm)		8.35 ± 0.23	1.000
Eu	(ppm)	1.92 ± 0.04	1.73 ± 0.04	0.900
Fe	(%)	4.34 ± 0.10	4.29 ± 0.08	0.986
Hf	(ppm)	9.54 ± 0.22	9.23 ± 0.23	0.967
К	(%)	2.17 ± 0.08	2.12 ± 0.10	1.000
La	(ppm)	50.5 ± 0.9	52.2 ± 1.0	0.979
Lu	(ppm)	0.729 ± 0.021	0.666 ± 0.023	0.914
Mn	(ppm)		152 ± 3	1.000
Na	(%)	0.101 ± 0.003	0.091 ± 0.002	0.898
Nd	(ppm)		45.9 ± 4.2	1.000
Ni	(ppm)		47 ± 27	1.000
Rb	(ppm)	161 ± 6	143 ± 4	0.880
Sb	(ppm)	1.65 ± 0.10	1.35 ± 0.06	0.820
Sc	(ppm)	18.7 ± 0.4	18.5 ± 0.3	0.988
Sm	(ppm)	8.92 ± 0.36	8.47 ± 0.24	0.950
Sr	(ppm)		101 ± 20	1.000
Та	(ppm)	1.71 ± 0.09	1.76 ± 0.07	1.032
Tb	(ppm)	1.40 ± 0.04	1.40 ± 0.30	1.000
Th	(ppm)	17.7 ± 0.4	15.7 ± 0.3	0.889
Ti	(%)		0.74 ± 0.03	1.000
U	(ppm)	3.78 ± 0.25	4.69 ± 0.40	1.240
V	(ppm)		152 ± 2	1.000
Yb	(ppm)	4.52 ± 0.10	4.72 ± 0.23	1.045
Zn	(ppm)		76 ± 4	1.000
Zr	(ppm)		241 ± 30	1.000

Table 43. Concentrations of elements in the British Museum's Standard pottery with conversion factors to MURR.

		Perlman & A	saro (1969)	MURR values	Conversion Factors
Element	Units	public	ation	(n = 37)	PA Std-to-MURR
Al	(%)	15.9	± 0.2	15.7 ± 0.2	0.987
As	(ppm)	30.8	± 2.2	30.0 ± 0.6	0.974
Ва	(ppm)	712	± 32	711 ± 6	0.999
Са	(%)	0.28	± 0.05	0.30 ± 0.03	1.071
Ce	(ppm)	80.3	± 3.9	79.3 ± 1.7	0.988
Со	(ppm)	14.1	± 0.2	13.9 ± 0.2	0.989
Cr*	(ppm)	115	± 4	111 ± 3	0.963
Cs	(ppm)	8.31	± 0.55	8.27 ± 0.21	0.995
Dy	(ppm)	4.79	± 0.19	4.56 ± 0.14	0.952
Eu*	(ppm)	1.29	± 0.03	1.28 ± 0.01	0.992
Fe	(%)	1.02	± 0.01	1.01 ± 0.02	0.990
Hf	(ppm)	6.23	± 0.44	6.12 ± 0.18	0.982
К	(%)	1.45	± 0.04	1.39 ± 0.07	0.959
La	(ppm)	44.9	± 0.5	45.1 ± 0.8	1.004
Lu*	(ppm)	0.43	± 0.04	0.46 ± 0.04	1.069
Mn	(ppm)	40.9	± 0.5	43 ± 2	1.050
Na	(%)	0.258	± 0.004	0.25 ± 0.01	0.969
Nd	(ppm)			34.9 ± 1.3	1.000
Ni	(ppm)	279	± 20	229 ± 33	0.821
Rb	(ppm)	70	± 6	65 ± 3	0.929
Sb	(ppm)	1.71	± 0.05	1.63 ± 0.07	0.953
Sc	(ppm)	20.6	± 0.3	19.5 ± 0.5	0.949
Sm	(ppm)	5.78	± 0.12	6.46 ± 0.13	1.118
Sr	(ppm)	145	± 22	123 ± 22	0.848
Та	(ppm)	1.55	± 0.04	1.67 ± 0.05	1.077
Tb	(ppm)			0.72 ± 0.07	1.000
Th	(ppm)	14.0	± 0.4	13.4 ± 0.3	0.960
Ti	(%)	0.78	± 0.03	0.91 ± 0.08	1.164
U	(ppm)	4.82	± 0.14	5.18 ± 0.15	1.075
V	(ppm)			152 ± 5	1.000
Yb	(ppm)	2.80	± 0.38	2.81 ± 0.15	1.004
Zn	(ppm)	59	± 8	64 ± 44	1.080
Zr	(ppm)			175 + 16	1.000

Table 44.	Concentrations of elements in the Perlman-Asaro Standard pottery used at the
	Lawrence Berkeley National Laboratory (LBNL) with conversion factors to MURR

* Other Perlman-Asaro data

		Harbottle (1987)	MURR	va	lues	Conversion Factors
Element	Units	private communication	(n =	24	0)	Ohio Red-to-MURR
		•			,	
Al	(%)		9.19	±	0.18	1.000
As	(ppm)		13.3	±	1.1	1.000
Ва	(ppm)	703	617	±	30	0.878
Ca	(%)		0.41	±	0.04	1.000
Ce	(ppm)	110.7	106.4	±	3.4	0.961
Со	(ppm)	19.9	20.1	±	0.5	1.010
Cr	(ppm)	91.0	90.8	±	2.3	0.998
Cs	(ppm)	10.2	10.3	±	0.2	1.010
Dy	(ppm)		6.33	±	0.21	1.000
Eu	(ppm)	1.76	1.54	±	0.05	0.875
Fe	(%)	5.31	5.15	±	0.13	0.970
Hf	(ppm)	6.3	7.41	±	0.24	1.176
К	(%)	3.41	3.47	±	0.11	1.018
La	(ppm)		48.2	±	1.3	1.000
Lu	(ppm)	0.77	0.56	±	0.22	0.721
Mn	(ppm)	248	258	±	11	1.040
Na	(%)	0.137	0.129	±	0.003	0.942
Nd	(ppm)		41.7	±	3.6	1.000
Ni	(ppm)		66	±	15	1.000
Rb	(ppm)	175	177	±	5	1.011
Sb	(ppm)	1.24	1.20	±	0.06	0.968
Sc	(ppm)	20.0	17.8	±	0.4	0.890
Sm	(ppm)	8.30	8.28	±	0.37	0.998
Sr	(ppm)		56	±	16	1.000
Та	(ppm)	1.79	1.45	±	0.05	0.810
Tb	(ppm)		1.07	±	0.24	1.000
Th	(ppm)	15.5	14.5	±	0.3	0.935
Ti	(%)		0.60	±	0.03	1.000
U	(ppm)	2.98	3.08	±	0.34	1.034
V	(ppm)		201	±	5	1.000
Yb	(ppm)	4.31	4.08	±	0.21	0.947
Zn	(ppm)	96.4	98	±	10	1.017
Zr	(ppm)		179	±	22	1.000

Table 45. Concentrations of elements in the old Ohio Red Clay used at the Brookhaven National Laboratory (BNL) with conversion factors to MURR.

		SRM-37e	SRM-124c	SRM-158a	SRM-400	SRM-1252c
		Sheet	Ounce	Silicon	Unalloyed	Phosphorized
Element	Units	Brass	Metal	Bronze	Copper	Copper IX
Ag	(ppm)			22	181 ± 4	167 ± 10
Al	(ppm)			4600		
As	(ppm)				140 ± 13	115 ± 2
Au	(ppm)				(10)	34.9 ± 1.4
Bi	(ppm)				24.5	21 ± 2
Со	(ppm)			2.8	0.6	90 ± 4
Cr	(ppm)					7.4 ± 2.0
Cu	(%)	69.61	84.22	90.93	99.7	99.89 ± 0.13
Fe	(ppm)	40	1070	12300	41 ± 2	(35)
Mn	(ppm)			11100		
Ni	(ppm)	5300	6000	10	603 ± 3	128 ± 1
Р	(ppm)		240	260		
Pb	(%)	1.0	4.74	970 ppm	128 ppm	60 ppm
S	(ppm)		480			
Sb	(ppm)		2000	8	102 ± 4	42 ± 1
Se	(ppm)				201 ± 10	53.6 ± 8
Si	(ppm)		20	30300		
Sn	(%)	1.0	5.13	0.96	160 ppm	110 ppm
Те	(ppm)				153 ± 2	51 ± 3
Zn	(%)	27.85	4.93	2.08	114 ppm	60 ppm

Table 46. Concentrations of elements in copper-based SRMs from NIST

		BCR-691A Quaternary	BCR-691B Modern	BCR-691C	BCR-691D	BCR-691E Tin-Bronze
Element	Units	Bronze	Brass	Copper	Copper	Copper IX
Cu	%	78.726	82.651	94.968	80.267	92.445
Zn	%	6.020	14.800	0.055	0.148	1.157
٩s	%	0.194	0.099	4.600	0.285	0.194
Sn	%	7.160	2.060	0.202	10.100	7.000
Pb	%	7.900	0.390	0.175	9.200	0.204

Table 47. Concentrations of elements in copper standards for XRF calibration: BCR-691 series

Table 48. Concentrations of elements in copper standards for XRF: Brammer Standards

		BS-314A	BS-360A	BS-510A	BS-544A	BS-674A
Element	Units	Copper Alloy				
Cu	%	89.75	61.42	95.1	88.4	58.5
Zn	%	8.7	35.63	0.21	3.42	39.1
As	%	< 0.003	0.002	0.0008	0.011	0.003
Sn	%	0.0019	0.13	4.6	4.42	0.8
Pb	%	1.47	2.51	0.016	4.16	0.074
Fe	%	0.019	0.151	0.005	0.092	1.12
Ni	%	0.009	0.058	0.02	0.16	0.019

Table 49. Concentrations of elements in copper standards for XRF: Metal Standards Company

		BS-932A	CD 706	M 400	
		Copper	Hussey	Thyssen	
Element	Units	Alloy	Copper Ltd	Krupp	
Cu	%	82.9	87.89	32.08	
Zn	%	3.35	0.03	< 0.01	
As	%	0.014			
Sn	%	6.26			
Pb	%	7.09	0.013	0.001	
Fe	%	0.068	1.44	1.6	
Ni	%	0.12	10	64.7	

		EB-506	EB-507	EB-508	8079	Fluxana
		Rose	Yellow	White	BRM4	0738-16
Element	Units	Gold	Gold	Gold	Foil	16 mm
Au	%	58.56 ± 0.06	75.10 ± 0.11	75.12 ± 0.11	79.96	58.58
Ag	%	3.90 ± 0.05	3.02 ± 0.05	24.9 ± 0.05	15.09	19.8
Cu	%	35.65 ± 0.06	14.69 ± 0.05		5.00	21.1
Ni	%		4.99 ± 0.04			
Zn	%	1.891 ± 0.018	2.107 ± 0.016			5.2

 Table 50. Concentrations of elements in precious metals for XRF calibration:

 European Reference Materials, Canadian Gold Bullion & Eluxana

Table 51. Concentrations of elements in glass reference materials. Drin Glass.								
Element	Units	Glass A	Glass B	Glass C	Glass D			
Al	(%)	0.529	2.307	0.460	2.805			
Ва	(%)	0.502	0.107	10.211	0.457			
Са	(%)	3.595	6.118	3.624	10.578			
Со	(%)	0.134	0.036	0.142	0.018			
Cu	(%)	0.935	2.125	0.903	0.304			
Fe	(%)	0.981	0.306	0.306	0.468			
К	(%)	2.383	0.830	2.358	9.381			
Mg	(%)	1.604	0.621	1.664	2.376			
Mn	(%)	0.775	0.194		0.426			
Na	(%)	10.608	12.611	0.794	0.890			
Ni	(%)		0.078					
Р	(%)	0.057	0.358	0.061	1.715			
Pb	(%)	0.111	0.566	34.069	0.446			
Sb	(%)	1.317	0.346	0.023	0.730			
Sn	(%)	0.150	0.032	0.150	0.079			
Sr	(%)	0.085	0.016	0.245	0.048			
Ті	(%)	0.473	0.053	0.473	0.228			
V	(%)		0.020					
Zn	(%)	0.036	0.154	0.042	0.081			

 Table 51. Concentrations of elements in glass reference materials: Brill Glass.

These data are from:

Brill (1999). Chemical Analyses of Early Glass, Volume 1: Catalogue of Samples.

Table 52.	52. Concentrations of elements in glass reference materials: NIST and MURR.						
				Glass Buttes	Pachuca		
Element	Units	SRM-612	SRM-610	Obsidian	Obsidian		
Al	(%)	1.12	1.08	7.09	6.51		
As	(ppm)	37.3	317	0.9	3.1		
В	(ppm)	(32)	350				
Ва	(ppm)	37.7	424	1270	16.6		
Ве	(ppm)	39.8	421				
Ca	(%)	8.53	8.18	0.68	0.12		
Ce	(ppm)	38.4	448	48.4	92.0		
Со	(ppm)	35.3	405				
Cr	(ppm)	39.9	405				
Cs	(ppm)	41.6	361	3.4	3.9		
Cu	(ppm)	36.7	430				
Dy	(ppm)	36.0	427	3.6	15.8		
Er	(ppm)	37.4	426	2.0	12.0		
Eu	(ppm)	34.4	461	0.6	1.6		
Fe	(mag)	56.3	457	6840	15800		
Gd	(ppm)	37.0	420	3.5	11.6		
Hf	(ppm)	34.8	418	3.7	27.0		
Но	(ppm)	37.9	449	0.6	3.7		
In	(ppm)	42.9	441				
ĸ	(ppm)	66 3	486	34300	34600		
la	(ppm)	35.8	457	25.8	38.6		
li	(ppm)	41 5	457	23.0	63.0		
	(ppiii) (ppm)	37.7	435		1 9		
Μσ	(ppiii) (ppm)	57.7 77 /	455	501	286		
Mn	(ppiii) (ppm)	28 /	405	277	11/0		
Mo	(ppiii) (ppm)	20.4	277	527	1145		
No	(ppiii)	10.27	0.01	2 0 /	2 90		
NA	(/0)	10.57	9.91	2.04	5.60		
UN Nd	(ppm)	36.1	419	9.1	110.0		
	(ppm)	35.2	431	18.7	33.0		
	(ppm)	38.4	444				
P D	(ppm)	55.2	343	244	196		
PD	(ppm)	39.0	413	17.0	35.0		
Pr	(ppm)	37.2	430	4.5	10.5		
RD	(ppm)	31.6	431	95.0	192.0		
Sb	(ppm)	38.4	369				
SI	(%)	33.58	32.68	35.60	35.20		
Sm	(ppm)	36.7	451	3./	9.9		
Sn	(ppm)	38.0	396				
Sr	(ppm)	76.2	497	52.0	1.9		
Tb	(ppm)	35.9	443	0.6	2.3		
Th	(ppm)	37.2	451	8.5	17.9		
Ti	(ppm)	48.1	434	595	1050		
Tm	(ppm)	37.6	420	0.3	1.8		
U	(ppm)	37.2	457	4.1	6.9		
V	(ppm)	39.2	442	1.4	4.4		
Υ	(ppm)	38.3	450	18.0	111.0		
Yb	(ppm)	40.0	462	2.8	12.3		
Zn	(ppm)	37.9	440	26.5	191.0		
Zr	(ppm)	36.0	440	83	1058		
Standard	Pb 206/204	Pb 207/204	Pb 208/204				
----------	----------------------	--------------------------------	------------------				
	National Institu	te of Standards and Technology					
SRM-981	16.9416 ± 0.0011	15.4999 ± 0.0011	36.7258 ± 0.0160				
SRM-982	36.7384 ± 0.0072	17.1590 ± 0.0030	36.7443 ± 0.0077				
	US	Geological Survey					
AGV-2	18.8640 ± 0.0070	15.6090 ± 0.0060	38.5110 ± 0.0200				
BCR-2	18.7500 ± 0.0110	15.6150 ± 0.0030	38.6910 ± 0.0210				
BHVO-2	18.6490 ± 0.0190	15.5400 ± 0.0150	38.2490 ± 0.0220				
G-2	18.4019 ± 0.0209	15.6353 ± 0.0025	38.9001 ± 0.0190				
RGM-2	18.9550 ± 0.0170	15.6180 ± 0.0020	38.6600 ± 0.0080				
W-2	18.7497 ± 0.0045	15.6623 ± 0.0030	38.6321 ± 0.0089				
	Geolo	gical Society of Japan					
JA-1	18.3020 ± 0.0009	15.5340 ± 0.0010	38.2374 ± 0.0034				
JA-2	18.3898 ± 0.0009	15.5927 ± 0.0009	38.6202 ± 0.0030				
JA-3	18.3171 ± 0.0008	15.5539 ± 0.0009	38.3736 ± 0.0028				
JB-1a	18.3713 ± 0.0009	15.5504 ± 0.0009	38.6601 ± 0.0030				
JB-2	18.3315 ± 0.0025	15.5460 ± 0.0021	38.2240 ± 0.0055				
JB-3	18.2839 ± 0.0011	15.2280 ± 0.0011	38.1996 ± 0.0034				
JR-1	18.3493 ± 0.0009	15.5490 ± 0.0009	38.3662 ± 0.0028				
JR-2	18.3454 ± 0.0008	15.5482 ± 0.0009	38.3605 ± 0.0028				
JG-1a	18.6057 ± 0.0008	15.6102 ± 0.0008	38.6874 ± 0.0028				
JG-2	18.6050 ± 0.0007	15.6345 ± 0.0008	38.9829 ± 0.0024				
JG-3	18.3530 ± 0.0009	15.5640 ± 0.0010	38.4469 ± 0.0030				

Table 53. Reference materials for lead isotope studi	able 53.	Reference materials f	or lead isoto	pe studies.
--	----------	------------------------------	---------------	-------------

Table 54. Reference materials for strontium isotope studies.	
--	--

Standard	Sr 87/86
BCR-2	0.704997 ± 0.000042
BHVO-2	0.703468 ± 0.000012
G-2	0.709775 ± 0.000008
RGM-2	0.704230 ± 0.000020
W-2	0.706977 ± 0.000017

NOTES